¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§ |
ÏÈ/Ãå½ç¤Îɽ¤òºî¤ê¥¢¥ë¥Õ¥¡¥Ù¥Ã¥È¤òÄɵ¤·¤Æ¤¤¤¯¤È¡¢A¤Ï3ÏÈ5Ãå¤Ë¤Ê¤ê¤Þ¤·¤¿¡£ |
¡¡¡¡
4·î21Æü¡ÊÌÚ¡Ë 0:06:08¡¡¡¡
¡¡¡¡51449 |
¤à¤é¤«¤ß |
3°Ì¤Î¢®¢®¢®¢®¢®¢®¢®¢®¤¬»ä¤Î¤è¤¦¤Êµ¤¤¬¤·¤Þ¤¹¡£
¤½¤Î¸å¤ËÁ÷¤ê¤Ê¤ª¤·¤¿Ì¾Á°¤Ï¤¦¤Þ¤¯È¿±Ç¤µ¤ì¤Æ¤¤¤Þ¤¹¡£ |
¡¡¡¡
4·î21Æü¡ÊÌÚ¡Ë 0:07:45¡¡¡¡
¡¡¡¡51450 |
¤·¤È¤ª |
»ä¤âɽ¤òÉÁ¤¤Þ¤·¤¿¡£¾¯¤·¤º¤Äɽ¤¬Ëä¤Þ¤Ã¤Æ¤¤¤¯¤Î¤¬µ¤»ý¤Á¤è¤¯¤Æ³Ú¤·¤«¤Ã¤¿¤Ç¤¹¤Í |
¡¡¡¡
4·î21Æü¡ÊÌÚ¡Ë 0:13:41¡¡¡¡
¡¡¡¡51451 |
Mr.¥À¥ó¥Ç¥£ |
¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§¤µ¤ó¤Î¡¡#51449¤ÈƱÍͤˤ·¤Þ¤·¤¿¡£ |
¡¡¡¡
4·î21Æü¡ÊÌÚ¡Ë 0:14:17¡¡¡¡
¡¡¡¡51452 |
»ç¤Îé¬é¯¤Î¿Í |
£µ¡ß£µ¤Îɽ¤òºî¤Ã¤Æ²ò¤¤Þ¤·¤¿¡£
³Æ¹Ô³ÆÎó¤Ë¤Ï¡¢£Á¡Á£Å¤¬°ì¤Ä¤·¤«Æþ¤é¤Ê¤¤¤Î¤Ç¡¢½ù¡¹¤Ë²ò¤±¤Æ¤¤¤¤Þ¤¹¡£ £±Ãå¡¡£´ÏÈ¡¡£Ã £²Ãå¡¡£²ÏÈ¡¡£Â £³Ãå¡¡£±ÏÈ¡¡£Å £´Ãå¡¡£µÏÈ¡¡£Ä £µÃå¡¡£³ÏÈ¡¡£Á ¤Ë¤Ê¤ê¤Þ¤·¤¿¡£ ¤À¤«¤é¡¢Åú¤¨¤Ï¡Ö3,5¡× |
¡¡¡¡
4·î21Æü¡ÊÌÚ¡Ë 0:20:21¡¡¡¡
¡¡¡¡51453 |
¡Ö¿ô³Ø¡×¾®Î¹¹Ô |
ÉÔ²Äǽ¤Ê½çÎó¤ò¾Ã¤·¤Æ¤¤¤¯¤È¹Ê¤ì¤Þ¤·¤¿¡£ |
¡¡¡¡
4·î21Æü¡ÊÌÚ¡Ë 1:23:29¡¡¡¡
¡¡¡¡51454 |
Sunachu |
5x5x5¤ÎΩÊýÂΤǹͤ¨¤¿¤é´Êñ¤Ç¤·¤¿¡£ |
¡¡¡¡
4·î21Æü¡ÊÌÚ¡Ë 9:30:36¡¡¡¡
¡¡¡¡51456 |
ÃæDA |
Ëͤâ5¡ß5¤Îɽ¤ò»È¤Ã¤Æ²ò¤¤Þ¤·¤¿¡£
A¤ÎÃå½ç¤¬ºÇ½é¤Ëµá¤Þ¤ê¤Þ¤·¤¿¡£ |
¡¡¡¡
4·î21Æü¡ÊÌÚ¡Ë 20:43:11¡¡¡¡
¡¡¡¡51457 |
SECOND |
!¤³¤ó¤ÊÌäÂê¤ò¥×¥í¥°¥é¥à¤Ç²ò¤¯¤Ë¤Ï¡¢¤É¤¦¤¹¤ì¤Ð¤è¤¤¤«¡©¡©¡¡ÆñÂê¤Ç¡¢¡¢»ÅÊý¤Ê¤¤¡¢
!½çÎó P(5,5)=120 ¤Î£²¾è¡¢14400Ä̤ꡢÁ´¤Æ¤Î¥±¡¼¥¹¤ò¸¡ºº¤·¤¿¡££±Ä̤ê¤À¤±¤Ç¾¤Ë¤Ï̵¤¤¡£ !¿Í¤Îů³ØŪ²òË¡¤ò¡¢Âå¹Ô¤µ¤»¤ë¤Ë¤Ï¡¢¤É¤¦¤¹¤ì¤Ð¤è¤¤¤À¤í¤¦¡¦¡¦ !ok= 0 1 !ok= 0 2 !ok= 0 3 !¡¡¡¡¡¡ ( !¡¡¡¡¡¡¡¡) !ok= 0 6220 !ok= 1 6221 ! - - E - - ! - B - - - ! - - - - A ! C - - - - ! - - - D - !ok= 0 6222 !¡¡¡¡¡¡ ( !¡¡¡¡¡¡¡¡) !ok= 0 14399 !ok= 0 14400 DIM m(120,5), z(5), h$(5,5) DATA 1,2,3,4,5 MAT READ z CALL perm20(1) !z(5)=1,2,3,4,5 ¤Î½çÎó P(5,5) ¤ÎŸ³«¤ò m(120,5)¤ËºîÀ® ! FOR y=1 TO 120 FOR x=1 TO 120 MAT h$="-"& NUL$ !h$(ÏÈ,Ãå½ç) ¤ò ¶õ¥Þ¡¼¥¯"-"¤ÇËä¤á¤ë FOR i=1 TO 5 LET h$(m(y,i),m(x,i))=CHR$(i+64) !P(5,5)^2=14400Ä̤ê¤Î (ÏÈ,Ãå½ç)¥±¡¼¥¹¤ò h$(5,5) ¤Ë½ç¼¡ºîÀ® NEXT i CALL check !´ÑµÒ¥¢¡Á´ÑµÒ¥¤Î¾ò·ï¡¢¸¡ºº LET n=n+1 PRINT "!ok=";ok;n IF ok=1 THEN MAT PRINT USING "! # # # # #" :h$ pause END IF NEXT x NEXT y !------------------------------------------- ! ÇÛÎó h$(1~5ÏÈ,1~5Ãå½ç) ¤ÎÃæÌ£ ABCDE ¤Î¸¡ºº !------------------------------------------- SUB check LET ok=0 !-------------------- !´ÑµÒ¥¢¡¡£Ã¤Ï£´ÏȤ«¡¼¡£ !-------------------- FOR i=1 TO 5 IF h$(4,i)="C" THEN EXIT FOR NEXT i IF 5< i THEN EXIT SUB !-------------------- !´ÑµÒ¥¤¡¡£Å¤Ï¡¢£µÏȤÎÇϤè¤ê¤ÏÀèÃ夷¤¿¤è¡£ !-------------------- FOR i=1 TO 5 IF h$(5,i)<>"-" THEN EXIT FOR NEXT i FOR j=1 TO i-1 FOR w=1 TO 4 IF h$(w,j)="E" THEN EXIT FOR NEXT w IF w<=4 THEN EXIT FOR NEXT j IF i<=j THEN EXIT SUB !-------------------- !´ÑµÒ¥¦¡¡£±ÏȤÎÇÏ¡¢£³Ãå°Ê²¼¤À¤Í¡£ !-------------------- IF h$(1,1)<>"-" OR h$(1,2)<>"-" THEN EXIT SUB !-------------------- !´ÑµÒ¥¨¡¡£Â¤Ï£²Ã夫¡¼¡¢Àˤ·¤¤¤Ê¤¡¡£ !-------------------- FOR i=1 TO 5 IF h$(i,2)="B" THEN EXIT FOR NEXT i IF 5< i THEN EXIT SUB !-------------------- !´ÑµÒ¥ª¡¡£³ÏȤÎÇÏ¡¢£µÃå¤À¤Ã¤¿¤è...¡£ !-------------------- IF h$(3,5)="-" THEN EXIT SUB !-------------------- !´ÑµÒ¥«¡¡£²ÏȤÎÇϤϡ¢£±Ãå¤Ë¤Ï¤Ê¤ì¤Ê¤«¤Ã¤¿¤«¡£ !-------------------- IF h$(2,1)<>"-" THEN EXIT SUB !-------------------- !´ÑµÒ¥¡¡£Ä¤Ï¡¢£±Ãå¤ÎÇϤè¤ê³°Â¦¤ÎÏÈ¡ÊÃí¡§ÏȤÎÈֹ椬Â礤¤¤È¤¤¤¦¤³¤È¡Ë¤À¤Ã¤¿¤Ê¡¼¡£ !-------------------- FOR i=1 TO 5 IF h$(i,1)<>"-" THEN EXIT FOR NEXT i FOR i=i+1 TO 5 FOR j=2 TO 5 IF h$(i,j)="D" THEN EXIT FOR NEXT j IF j<=5 THEN EXIT FOR NEXT i IF 5< i THEN EXIT SUB !-------------------- LET ok=1 END SUB !----------------------------------------------------- ! z(5)=1,2,3,4,5 ¤Î ½çÎó P(5,5)¤ò¡¢m(120,5) ¤Ë³ÊǼ¤¹¤ë !----------------------------------------------------- SUB perm20(k) !start CALL perm20(1) local i IF k<=5 THEN FOR i=k TO 5 swap z(k),z(i) CALL perm20(k+1) swap z(k),z(i) NEXT i ELSE LET p=p+1 FOR i=1 TO 5 LET m(p,i)=z(i) NEXT i END IF END SUB END |
¡¡¡¡
4·î22Æü¡Ê¶â¡Ë 11:17:43¡¡¡¡
¡¡¡¡51458 |
¤è¤ó¤Ò |
python¡Ê¼ê½¬¤¤Ãæ¡Ë¤ÇÀ©Ìó¥×¥í¥°¥é¥ß¥ó¥°¤Ç²ò¤¤¤Æ¤ß¤Þ¤·¤¿¡£
Google Colab¾å¤Ç¡¢°Ê²¼¤Î¥³¡¼¥É¤ò¼Â¹Ô¤¹¤ë¤È UMA Chaku Waku A 5 3 B 2 2 C 1 4 D 4 5 E 3 1 ¤È¤¤¤¦·ë²Ì¤¬ÆÀ¤é¤ì¤Þ¤·¤¿¡£ ------------------------ !pip install ortools from ortools.sat.python import cp_model class SolutionPrinter(cp_model.CpSolverSolutionCallback): def __init__(self, u2c, u2w): cp_model.CpSolverSolutionCallback.__init__(self) self.__u2c = u2c self.__u2w = u2w self.__solution_count = 0 def solution_count(self): return self.__solution_count def on_solution_callback(self): print('Solution %i,' % self.__solution_count) self.__solution_count += 1 uma=['A','B','C','D','E'] print('UMA Chaku Waku') for i in range(len(uma)): print(f'{uma[i]} {self.Value(u2c[i])+1} {self.Value(u2w[i])+1}') print() m = cp_model.CpModel() u2w=[m.NewIntVar(0,5-1,'u2w%i'% i) for i in range(5)]#ÇÏ¢ªÏÈ w2c=[m.NewIntVar(0,5-1,'w2c%i'% i) for i in range(5)]#ÏÈ¢ªÃå u2c=[m.NewIntVar(0,5-1,'u2c%i'% i) for i in range(5)]#ÇÏ¢ªÃå m.AddAllDifferent(u2w) m.AddAllDifferent(w2c) m.AddAllDifferent(u2c) for i in range(5): m.AddElement(u2w[i],w2c,u2c[i])#ÇÏ¢ªÏÈ¢ªÃå¤ÈÇÏ¢ªÃ夬°ìÃ× #£Ã¤Ï£´ÏȤ«¡¼¡£ m.Add(u2w[2]==3) #£Å¤Ï¡¢£µÏȤÎÇϤè¤ê¤ÏÀèÃ夷¤¿¤è¡£ m.Add(u2c[4]<w2c[4]) #£±ÏȤÎÇÏ¡¢£³Ãå°Ê²¼¤À¤Í¡£ m.Add(w2c[0]>=2) #£Â¤Ï£²Ã夫¡¼¡¢Àˤ·¤¤¤Ê¤¡¡£ m.Add(u2c[1]==1) #£³ÏȤÎÇÏ¡¢£µÃå¤À¤Ã¤¿¤è...¡£ m.Add(w2c[2]==4) #£²ÏȤÎÇϤϡ¢£±Ãå¤Ë¤Ï¤Ê¤ì¤Ê¤«¤Ã¤¿¤«¡£ m.Add(w2c[1]!=0) #£Ä¤Ï¡¢£±Ãå¤ÎÇϤè¤ê³°Â¦¤ÎÏÈ¡ÊÃí¡§ÏȤÎÈֹ椬Â礤¤¤È¤¤¤¦¤³¤È¡Ë¤À¤Ã¤¿¤Ê¡¼¡£ c2w=[m.NewIntVar(0,5-1,'c2w%i'% i) for i in range(5)]#Ã墪ÏÈ m.AddInverse(w2c,c2w) m.Add(u2w[3]>c2w[0]) # Solve the model. solver = cp_model.CpSolver() solution_printer = SolutionPrinter(u2c,u2w) solver.parameters.enumerate_all_solutions = True solver.Solve(m, solution_printer) |
¡¡¡¡
4·î22Æü¡Ê¶â¡Ë 17:04:42¡¡¡¡
¡¡¡¡51459 |
¤è¤ó¤Ò |
¤³¤Î·Ç¼¨ÈĤϹÔƬ¤Î¥¹¥Ú¡¼¥¹¤¬¥È¥ê¥à¤µ¤ì¤Æ¤·¤Þ¤¦¤ó¤Ç¤¹¤Í¡£python¤Ï¥¹¥Ú¡¼¥¹¤Ëʸˡ¾å¤Î°ÕÌ£¤¬¤¢¤ë¤Î¤ÇÀµ¤·¤¯Æþ¤ì¤Ê¤¤¤È¥¨¥é¡¼¤Ë¤Ê¤ê¤Þ¤¹¡£
¶õ¹Ô¤ò½ü¤¤¤¿4,9,11,27¹ÔÌܤË1¤Ä 5-8,10,12-16,18¹ÔÌܤË2¤Ä 17¹ÔÌܤË3¤Ä¤Î ¹ÔƬ¤Î¥¹¥Ú¡¼¥¹¡Ê¤Þ¤¿¤Ï¥¿¥Ö¡Ë¤¬ÉÕ¤¤Þ¤¹¡£ |
¡¡¡¡
4·î22Æü¡Ê¶â¡Ë 18:09:37¡¡¡¡
¡¡¡¡51460 |