¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§ |
°ì¿Í¤¬£Î»î¹ç¤¹¤ë¤È¤·¤Æ¡¢»²²Ã¼Ô¿ô¤Ï3£Î+1¡£
»î¹ç¤Ï4¿Í¤º¤Ä¤Ç¹Ô¤¦¤Î¤Ç¡¢Áí»î¹ç¿ô¤Ï£Î¡ß»²²Ã¼Ô¿ô¡à4¡£ »²²Ã¼Ô¿ô¤È»î¹ç¿ô¤Ï¤É¤Á¤é¤«¤¬´ñ¿ô¤Ê¤é¤â¤¦°ìÊý¤Ï´ñ¿ô¤Ê¤Î¤Ç¡¢»²²Ã¼Ô¿ô¤Þ¤¿¤Ï£Î¤¬4¤ÎÇÜ¿ô¤Ë¤Ê¤ë¤È¤¤ò¹Í¤¨¤ë¤È¡¢£Î¡á1¡¢4¡¢5¡¢8¡¢9¡¢12¡¦¡¦¡¦¤È¤Ê¤ê¡¢3¡ß12+1¡á37¤È¤Ê¤ê¤Þ¤·¤¿¡£ºÇ½é¤Ï£Î¤¬4¤ÎÇÜ¿ô¤Î¾ì¹ç¤ò¸«Íî¤È¤·¤Æ¤¤¤Þ¤·¤¿¡£ ¤·¤«¤·¼ÂºÝ¤ËÁȤ߹ç¤ï¤»Åª¤Ë²Äǽ¤«¤É¤¦¤«¤Þ¤Ç¤Ï¤Þ¤À¸¡¾Ú¤·¤Æ¤¤¤Ê¤¤¤È¤¤¤¦Å¬Åö¤Ê²òÅú¤Ç¤¹¡£ |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 0:20:26¡¡¡¡
¡¡¡¡45386 |
ʪÍý¹¥¤ |
ÁíÅö¤êɽ¤ò¹Í¤¨¤ÆÁ´¤Æ¤Î¥Þ¥¹¤Î¿ô¤ò¹Í¤¨¤ë¤Èn(n-1)¥Þ¥¹¤Ë¤Ê¤ë¢¨¼«Ê¬vs¼«Ê¬½ü¤¯
¤½¤³¤«¤é1²ó¤ÎÂжɤÇ12¥Þ¥¹Ëä¤Þ¤ë¤³¤È¤òȯ¸«¡¢Â¨¤Án(n-1)¤Ï12¤ÎÇÜ¿ô ¤µ¤é¤Ë1²ó¤ÇƱÂî¤Ç¤¤ë¤Î¤Ï3¿Í¤Ê¤Î¤Ç(n-1)¤Ï3¤ÎÇÜ¿ô ¤³¤ì°Ê¾å¾ò·ï¤Ï¤Ê¤¤¤Î¤Ç¤³¤ì¤òËþ¤¹¤ën¤òµá¤á¤Æ¡¢n=37¤¬6ÈÖÌܤ˾®¤µ¤¤¡£ [¢¬¤Þ¤À¤³¤Î²òË¡¡¢¾ÚÌÀ¤·¤Æ¤Ê¤¤¤Î¤Ç³Î¾Ú¤¬»ý¤Æ¤Þ¤»¤ó^^;] °ø¤ß¤Ë3¿ÍÂǤÁËã¿ý(3¿Í¤Ç¶¥¤¦¤â¤Î)¤Ê¤ë¤â¤Î¤¬¤¢¤Ã¤Æ¡¢¤½¤ì¤È4¿Í1ÁȤǹԤ¦Ëã¿ý¤òº®ºß¤µ¤»¤ë¤Ê¤é¡¢¤³¤ÎÌäÂê¤É¤¦¤Ê¤ë¤ó¤Ç¤·¤ç¤¦¤«¡Ä |
Âçºå¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 0:24:02¡¡¡¡
HomePage:Twitter¡¡¡¡45387 |
ðþí¦ |
»ä¤âƱ¤¸¤¯¡¢½½Ê¬¾ò·ï¤Ç¤¢¤ë¤³¤È¤òȽÄê¤Ç¤¤Æ¤¤¤Þ¤»¤ó¡£ |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 0:24:11¡¡¡¡
¡¡¡¡45388 |
°± |
º£²óÆñ¤·¤«¤Ã¤¿¤Ç¤¹orz
¿§¡¹»î¤·¤Þ¤·¤¿¤¬¡¢¤¢¤ë°ì¿Í¤¬¤Û¤«¤ÎÁ´¤Æ¤Î»²²Ã¼Ô¤ÈÂÐÀï¤Ç¤¤ë¤³¤È¤«¤é¡ÖÁ´ÂοͿô¤¬3n+1¤Ç¤¢¤ë¡×¤³¤È¡¢¥°¥ë¡¼¥×¿ô¤¬n(n-1)/12¤È¤Ê¤ë¤³¤È¤«¤é¡Ön(n-1)/12¤ÏÀ°¿ô¤Ç¤¢¤ë¡×¤³¤È¤Î2¤Ä¤ÎɬÍ×¾ò·ï¤òËþ¤¿¤¹À°¿ô¤Î¤¦¤Á6ÈÖÌܤ˾®¤µ¤¤¿ô¤òµá¤á¤Þ¤·¤¿¡£ ÀµÄ¾½½Ê¬¾ò·ï¤ò¸¡¾Ú¤·¤Æ¤ª¤é¤º¶öÁ³¹ç¤Ã¤Æ¤·¤Þ¤Ã¤¿¤è¤¦¤Ê·Á¤Ê¤Î¤Ç¡Ä³§ÍͤβòË¡¤ò»²¹Í¤Ë¤·¤¿¤¤¤Ç¤¹¡£ |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 0:25:50¡¡¡¡
¡¡¡¡45389 |
ʪÍý¹¥¤ |
ÌëÄ̤·¤Ç¾ÚÌÀ¹Í¤¨¤Æ¤ß¤Þ¤¹¢«^^; |
Âçºå¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 0:29:12¡¡¡¡
HomePage:Twitter¡¡¡¡45390 |
Ä̤ꤹ¤¬¤ê¤ÎÃæ1 |
¥Þ¡¼¥¸¥ã¥ó¤Î¥ë¡¼¥ë¤ò¤è¤¯¸«¤¿¤é¤ï¤«¤ê¤Þ¤·¤¿¡£
º£²óÆñ¤·¤«¤Ã¤¿¤Ç¤¹¤Í¡¼¡£ |
»»¿ô²¦¹ñ¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 0:30:46¡¡¡¡
HomePage:ËͤοÍÀ¸Ê³Æ®µ¡¡¡¡45391 |
¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§ |
°ì¿Í¤Î»î¹ç¿ô¤¬4¡¢»²²Ã¼Ô¿ô¤¬13¿Í¤Î¾ì¹ç¤ÇÁȤ߹ç¤ï¤»¤òºî¤Ã¤Æ¤ß¤è¤¦¤È¤·¤Þ¤·¤¿¤¬Í½ÁÛÄ̤꺤Æñ¤Ç¡¢¤³¤ì¤Ç6ÈÖÌܤޤǤ¹¤Ù¤Æ²Äǽ¤Ç¤¢¤ë¤³¤È¤ò¼¨¤¹¤Î¤Ï¸½¼ÂŪ¤Ç¤Ï¤Ê¤µ¤½¤¦¤Ç¤¹¡£¤Û¤«¤Î¿Í¤Î²òË¡¤Ë´üÂÔ¡£ |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 0:32:04¡¡¡¡
¡¡¡¡45392 |
Ä̤ꤹ¤¬¤ê¤ÎÃæ1 |
¤¦¡¼¤ó¡Ä
Ëͤâ¹Í¤¨¤Æ¤ß¤Þ¤¹¡£ |
»»¿ô²¦¹ñ¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 0:33:23¡¡¡¡
HomePage:ËͤοÍÀ¸Ê³Æ®µ¡¡¡¡45393 |
Ä̤ꤹ¤¬¤ê¤ÎÃæ1 |
»²²Ã¼Ô¿Í¿ô13¿Í¤Î»þ¡£
¤½¤ì¤¾¤ìX,X1.......X13¤È¤·¤Þ¤¹¡£ (¤Þ¤ºX1¤ò´ð½à¤Ë¹Í¤¨¤ë¤È)X1¤ÏX2¡ÁX4¡¢X5¡ÁX7¡¢X8¡ÁX10¡¢X11¡ÁX13¤ÈÂǤÁ¹ç¤¦¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£ Ʊ¤¸¤³¤È¤òX2.......X13¤Ç¤â¤¹¤ë(¤Ç¤¤ë)¡£(Çϼ¯¤Ê¤Î¤Ç¼ÂºÝ¤Ë½ñ¤¤Þ¤·¤¿) ¤³¤ì¤ÇÁ´°÷ÂǤÁ¹ç¤¨¤Þ¤¹¡£ |
»»¿ô²¦¹ñ¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 0:49:04¡¡¡¡
HomePage:ËͤοÍÀ¸Ê³Æ®µ¡¡¡¡45394 |
±ß¼þΨÂç¹¥¤¿Í´Ö |
Âç³Ø1ǯ¤Ç¤¹¡£7ǯ¤Ö¤ê¤ËÇÁ¤¤¤Æ¤ß¤Þ¤·¤¿¤¬¤Þ¤À³¤¤¤Æ¤¿¤³¤È¤Ë¤Ó¤Ã¤¯¤ê¤·¤Þ¤·¤¿¡£
Æñ¤·¤¤¤Ç¤¹¤Í¡¢½½Ê¬À¼¨¤»¤Æ¤Ê¤¤¤Î¤Ç²ò¤±¤¿µ¤¤¬¤·¤Þ¤»¤ó¡£ |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 1:15:04¡¡¡¡
¡¡¡¡45395 |
±ß¼þΨÂç¹¥¤¿Í´Ö |
Âç³Ø1ǯ¤Ç¤¹¡£7ǯ¤Ö¤ê¤ËÇÁ¤¤¤Æ¤ß¤Þ¤·¤¿¤¬¤Þ¤À³¤¤¤Æ¤¿¤³¤È¤Ë¤Ó¤Ã¤¯¤ê¤·¤Þ¤·¤¿¡£
Æñ¤·¤¤¤Ç¤¹¤Í¡¢½½Ê¬À¼¨¤»¤Æ¤Ê¤¤¤Î¤Ç²ò¤±¤¿µ¤¤¬¤·¤Þ¤»¤ó¡£ |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 1:16:35¡¡¡¡
¡¡¡¡45396 |
º£Ç¯¤«¤é¹âÎð¼Ô |
#45387¡¢#45389¤ÈƱ¤¸¤Ç¤·¤¿¡£
n*(n-1)/2¡Ên¿Í¤ò·ë¤ó¤ÀÀþ¤Î¿ô¡Ë¤¬6¡Ê4¿Í¤ò·ë¤ó¤ÀÀþ¤Î¿ô¡Ë¤ÎÇÜ¿ô¤Ç¡¢n-1¤¬3¡Ê1»î¹ç¤ÎÂÐÀïÁê¼ê¿ô¡Ë¤ÎÇÜ¿ô¡£n-1¤¬3¤ÎÇÜ¿ô¤Ç¤¢¤ë¤³¤È¤Ëµ¤ÉÕ¤¯¤Î¤Ë»þ´Ö¤¬¤«¤«¤Ã¤Æ¡¥¡¥¡¥¡£ 4, 13, 16, 25, 28, 37, 40, .... ¤È¤ê¤¢¤¨¤º¤È¤¤¤¦¤³¤È¤Ç¡¢¤³¤Î¿ô¤ÇÆþ¤ì¤¿¡£ 1¤¢¤ë¤¤¤Ï4¤Ë12¤º¤Ä²Ã¤¨¤Æ¤¤¤Ã¤¿¿ô¤Ç¤¹¤Í¡£2·ÏÎó¤Ë¤Ê¤ë¤È¤¤¤¦¤Î¤¬È½¤é¤ó¡ªÎ¾·ÏÎó¤È¤âÀ®Î©¤¹¤ë¤Î¤«¤Ê¥¢¡© |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 14:17:44¡¡¡¡
¡¡¡¡45397 |
¥Ï¥é¥®¥ã¡¼¥Æ¥¤ |
£±£³¤¬Åú¤¨¤È»×¤Ã¤Æ¤¤¤Þ¤·¤¿¡£
|
»³¸ý¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 5:53:09¡¡¡¡
HomePage:À©¸æ¹©³Ø¤Ë¥Á¥ã¥ì¥ó¥¸¡¡¡¡45398 |
¤ª¡¼¤Á¤ã¤ó |
16¿Í20»î¹ç¤Î½½Ê¬¾ò·ï¤Ï°Ê²¼¤Î¤È¤ª¤ê¡§
(1,2,3,4) (1,5,6,7) (1,8,9,10) (1,11,12,13) (1,14,15,16) (2,5,9,13) (2,6,12,16) (2,7,10,15) (2,8,11,14) (3,5,8,16) (3,6,10,11) (3,7,13,14) (3,9,12,15) (4,5,11,15) (4,6,9,14) (4,7,8,12) (4,10,13,16) (5,10,12,14) (6,8,13,15) (7,9,11,16) 25¿Í50»î¹ç¤è¤êÂ礤¤¾ì¹ç¤Ë¤Ä¤¤¤Æ°ìÈ̲½¤Ç¤¤ë¤è¤¦¤ÊÊýË¡¤Ï¤ï¤«¤ê¤Þ¤»¤ó¡£ |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 14:27:31¡¡¡¡
¡¡¡¡45399 |
uchinyan |
¤Ï¤¤¡¤¤³¤ó¤Ë¤Á¤Ï¡£¤µ¤Æ¡¤º£²ó¤ÎÌäÂê¤Ï¡¥¡¥¡¥
¤¦¡¼¤à¡¤¶ñÂÎŪ¤Ë»î¹ç¤Î¥Ñ¥¿¡¼¥ó¤òÄ´¤Ùµ¬Â§À¤ò¸«¤Ä¤±¤è¤¦¤È¤·¤¿¤Î¤Ç¤¹¤¬¡¤ ¤¦¤Þ¤¯¤¤¤«¤º¤Ï¤Þ¤Ã¤Æ¤·¤Þ¤¤¤Þ¤·¤¿¡£ »ÅÊý¤¬¤Ê¤¤¤Î¤Ç¡¤É¬Í×¾ò·ï¤òÄ´¤Ù¡¤¤½¤ì¤¬²Äǽ¤«¥×¥í¥°¥é¥à¤òÁȤߤޤ·¤¿¡£ ¤Þ¤º¡¤É¬Í×¾ò·ï¡£¿ô³Ø¤Ý¤¤¤Ç¤¹¤¬¤´¤á¤ó¤Ê¤µ¤¤¡£ £±¿Í¤¬ n »î¹ç¤¹¤ë¤È¤¹¤ë¤È¡¤¾ò·ï¤è¤ê¡¤»²²Ã¼Ô¿ô¤Ï 3n+1 ¿Í¡¤¤Î¤Ï¤º¤Ç¤¹¡£ ¤½¤³¤Ç¡¤Ëã¿ý¤Ï£´¿Í¤Ç¹Ô¤¦¤Î¤Ç¡¤Áí»î¹ç¿ô¤Ï¡¤n(3n+1)/4 »î¹ç¡¤¤Î¤Ï¤º¤Ç¤¹¡£ ¤³¤ì¤¬À°¿ô¤Ë¤Ê¤ë¤Ï¤º¤Ê¤Î¤Ç¡¤n ¤Ï¡¤4 ¤ÎÇÜ¿ôËô¤Ï 4 ¤Ç³ä¤Ã¤Æ 1 ;¤ë¿ô¡¤¤Ç¤¹¡£ ¤Ä¤Þ¤ê¡¤n = 1, 4, 5, 8, 9, 12, ...¡¤¤Ê¤Î¤Ç¡¤ »²²Ã¼Ô¿ô¡¤3n+1 = 4, 13, 16, 25, 28, 37, ...¡¤¤è¤ê¡¤£¶ÈÖÌÜ¤Ï 37 ¿Í¤Ë¤Ê¤ê¤Þ¤¹¡£ ¤É¤¦¤ä¤é¡¤¤³¤Î 37 ¿Í¤¬Åú¤¨¡¤¤È¤Ê¤Ã¤Æ¤¤¤ë¤è¤¦¤Ç¤¹¡£ ¤È¤³¤í¤¬¡¤ÌäÂê¤Ï¤³¤Î¸å¡£¼ÂºÝ¤Ë¼Â¸½¤Ç¤¤ë¤«¤Ç¤¹¡£ ¤è¤¯Ê¬¤«¤é¤Ê¤«¤Ã¤¿¤Î¤Ç¡¤n ¿Í¤Î¾ì¹ç¡¤»²²Ã¼Ô¤Ë 1 ¡Á n ¤ÈÈÖ¹æ¤òÉÕ¤±¡¤ ½½¿Ê¥Ù¡¼¥·¥Ã¥¯¤Ç¼¡¤Î¤è¤¦¤Ê¥×¥í¥°¥é¥à¤òÁȤߤޤ·¤¿¡£ LET m = 40 DIM p(m,m), s(10000,4) FOR n = 4 TO m MAT p = ZER LET cnt = 0 FOR a = 1 TO n-3 FOR b = a+1 TO n-2 LET f = 0 FOR c = b+1 TO n-1 FOR d = c+1 TO n IF (p(a,b) + 1 <= 1) AND (p(a,c) + 1 <= 1) AND (p(a,d) + 1 <= 1) AND (p(b,c) + 1 <= 1) AND (p(b,d) + 1 <= 1) AND (p(c,d) + 1 <= 1) THEN LET p(a,b) = p(a,b) + 1 LET p(a,c) = p(a,c) + 1 LET p(a,d) = p(a,d) + 1 LET p(b,c) = p(b,c) + 1 LET p(b,d) = p(b,d) + 1 LET p(c,d) = p(c,d) + 1 LET f = 1 LET cnt = cnt + 1 LET s(cnt,1) = a LET s(cnt,2) = b LET s(cnt,3) = c LET s(cnt,4) = d EXIT FOR END IF NEXT d IF f = 1 THEN EXIT FOR END IF NEXT c NEXT b NEXT a LET f = 0 FOR i = 1 TO n-1 FOR j = i+1 TO n IF p(i,j) < 1 THEN LET f = 1 END IF NEXT j IF f = 1 THEN EXIT FOR END IF NEXT i IF f = 0 THEN PRINT n FOR i = 1 TO cnt PRINT i; ":"; s(i,1); s(i,2); s(i,3); s(i,4) NEXT i REM FOR i = 1 TO n REM FOR j = 1 TO n REM PRINT p(i,j); REM NEXT j REM PRINT REM NEXT i END IF NEXT n END ·ë²Ì¤Ï¡¤ 4 1 : 1 2 3 4 13 1 : 1 2 3 4 2 : 1 5 6 7 3 : 1 8 9 10 4 : 1 11 12 13 5 : 2 5 8 11 6 : 2 6 9 12 7 : 2 7 10 13 8 : 3 5 9 13 9 : 3 6 10 11 10 : 3 7 8 12 11 : 4 5 10 12 12 : 4 6 8 13 13 : 4 7 9 11 »²²Ã¼Ô¿ô¤¬¡¤4 ¿Í¤È 13 ¿Í¡¤¤Î¾ì¹ç¤ÏÌäÂê¤Ê¤¯²ò¤¬ÆÀ¤é¤ì¤¿¤Î¤Ç¤¹¤¬¡¤ 16 ¿Í ¡Á 37 ¿Í¤Î¾ì¹ç¤Ï²ò¤¬ÆÀ¤é¤ì¤Þ¤»¤ó¡ª ¥×¥í¥°¥é¥à¤¬´Ö°ã¤Ã¤Æ¤¤¤ë¤Î¤Ç¤·¤ç¤¦¤«¡© Ìõ¤¬Ê¬¤«¤é¤ºÇº¤ó¤Ç¤ª¤ê¤Þ¤·¤¿¡£ ¤´¤á¤ó¤Ê¤µ¤¤¡£¾åµ¥×¥í¥°¥é¥à¤Ë¤Ï¸í¤ê¡¤¤È¤¤¤¦¤«¥Á¥§¥Ã¥¯ÉÔ¡¤¤¬¤¢¤ê¤Þ¤·¤¿¡£ ¤¹¤Ù¤Æ¤Î²Äǽ¤Ê£´¿Í¤Î¥Ñ¥¿¡¼¥ó¤ò¥Á¥§¥Ã¥¯¤Ï¤·¤Æ¤¤¤ë¤Î¤Ç¤¹¤¬¡¤ ¥Á¥§¥Ã¥¯¤Î½çÈÖ¤¬Ã±½ã¤¹¤®¤Æ°ìÅÙ¼ºÇÔ¤¹¤ë¤È¤¢¤¤é¤á¤Æ¤·¤Þ¤¦¤È¤¤¤¦¥ß¥¹¤òÈȤ·¤Þ¤·¤¿¡£ ¼ÂºÝ¤Ë¤Ï¡¤°ìÅ٤μºÇԤǤ¢¤¤é¤á¤º¤Ë¥Ð¥Ã¥¯¥È¥é¥Ã¥¯¤·¤ÆºÆÅÙÄ©À¤Î¥í¥¸¥Ã¥¯¤¬É¬ÍפǤ¹¤Í¡£ ÂçÃѤò¤«¤¤¤Æ¤·¤Þ¤¤¤Þ¤·¤¿¤¬¡¤¼«Ê¬¤Ø¤Î²ü¤á¤Î¤¿¤á¤Ë¡¤´º¤¨¤Æ»Ä¤·¤Æ¤ª¤¤Þ¤¹¡£ |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 15:41:34¡¡¡¡
¡¡¡¡45400 |
uchinyan |
¤¢¤ì¤ì¡¤16 ¿Í¤Î¾ì¹ç¤Î¶ñÂÎÎ㤬½Ð¤Þ¤·¤¿¤Í¡£
¤ä¤Ï¤ê¥×¥í¥°¥é¥à¤¬´Ö°ã¤Ã¤Æ¤¤¤¿¤è¤¦¤Ç¤¹¡£¤´¤á¤ó¤Ê¤µ¤¤¡£ |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 15:00:43¡¡¡¡
¡¡¡¡45401 |
uchinyan |
·Ç¼¨ÈĤòÆɤߤޤ·¤¿¡£
Ãí°Õ °Ê²¼¤Îµ½Ò¤Ï¡¤¤½¤â¤½¤â¤Ï»ä¼«¿È¤ÎÊÙ¶¯¤Î¥á¥â¤Ë²á¤®¤Ê¤¤¤Î¤Ç¤¹¤¬¡¤ À޳ѤʤΤǤ´»²¹Í¤Þ¤Ç¤Ë¤È»×¤Ã¤Æ¸ø³«¤¹¤ë¤â¤Î¤Ç¤¹¡£ ¤½¤¦¤¤¤¦¤³¤È¤â¤¢¤Ã¤Æ¡¤²òË¡¤ÎʬÎà¤Ï»»¥Á¥ã¥ì¤Î F.A.Q. ¤Î¡Ö»»¿ô¤ÎÈϰϡפε½Ò¤ò»²¹Í¤Ë¡¤ »ä¸Ä¿Í¤¬ÆÈÃǤÈÊи«¤Ç¼ç´ÑŪ¤Ë¹Ô¤Ã¤Æ¤¤¤ë¤â¤Î¤Ç¤¢¤Ã¤Æ¡¤µÒ´ÑŪ¤Ê¤â¤Î¤Ç¤Ï¤¢¤ê¤Þ¤»¤ó¡£ ¤¢¤¯¤Þ¤Ç¤â¤´»²¹Í¤Ç¤¹¡£°¤·¤«¤é¤º¡£ º£²ó¤Ï¡¤É¬Í×¾ò·ï¤òµÍ¤á¤ë¤Þ¤Ç¡¤¤È¤¤¤¦²òË¡¤¬Â¿¤¤¤è¤¦¤Ç¤¹¡£ ¼ÂºÝ¤Ë²Äǽ¤«¤Î½½Ê¬¾ò·ï¤Ï¡¤»î¹Ôºø¸íËô¤Ï¥×¥í¥°¥é¥à¡¤¤È¤¤¤¦¤³¤È¤Ë¤Ê¤ê¤½¤¦¤Ç¤¹¡£ ɬÍ×¾ò·ï¤òÄ´¤Ù¤ëÊýË¡¤ÇʬÎà¡£ #45386¡¤#45400 £±¿Í¤Î»î¹ç¿ô¤ò n »î¹ç¤È¤¹¤ë¤È¡¤»²²Ã¼Ô¿ô¤Ï 3n+1 ¿Í¡¤Áí»î¹ç¿ô¤Ï¡¤n(3n+1)/4 »î¹ç¡¤µá¤á¤ë²òË¡¡£ #45387¡¤#45389¡¤#45397 n ¿Í¤Î¾ì¹ç¡¤Áí»î¹ç¿ô¤¬ n(n-1)/12 »î¹ç¡¤£±»î¹ç£´¿Í¤è¤ê n-1 ¤¬ 3 ¤ÎÇÜ¿ô¤è¤ê¡¤µá¤á¤ë²òË¡¡£ |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 16:21:06¡¡¡¡
¡¡¡¡45402 |
¤Ë¤³¤¿¤ó |
¤È¤ê¤¢¤¨¤º¡£
n¤ò£³¸Ä¤º¤Ä¤Õ¤ä¤·¤Æ¡£ n¡ß(n-1)¤¬12¤Ç³ä¤ì¤ë¤Î¤¬É¬Í×¾ò·ï¤Ê¤Î¤Ç 37¤¬¤Ç¤Þ¤·¤¿¡£ ½½Ê¬¤Ç¤¢¤ë¤«¤Ï¡¢¤Þ¤À¹Í¤¨¤Æ¤¤¤Þ¤»¤ó¡£Org |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 17:19:57¡¡¡¡
MAIL:nikotan@fat.coara.or.jp ¡¡¡¡45403 |
Ä̤ꤹ¤¬¤ê¤ÎÃæ1 |
¤Þ¤¿Ä©Àï¼Ô¤Î¿ô°Û¾ï¤¸¤ã¤Ê¤¤¤Ç¤¹¤«¡©
¥¤¥¿¥º¥é¤Ç¤¹¤«¤Í¡© |
»»¿ô²¦¹ñ¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 18:30:58¡¡¡¡
HomePage:ËͤοÍÀ¸Ê³Æ®µ¡¡¡¡45404 |
µÈÀî¡¡¥Þ¥µ¥ë |
¤¤¤Ä¤Ï¡¢½½Ê¬À¤Ë¤Ä¤¤¤Æ¤Î¸¡¾Ú¤ò¤»¤º¤Ë½ÐÂꤷ¤Æ¤·¤Þ¤Ã¤Æ¤¤¤Þ¤·¤¿¡£¿½¤·Ìõ¤¢¤ê¤Þ¤»¤ó...¡£ºòÈÕ¡¢·Ç¼¨ÈĤǸ«¤Æ¤Ï¤¸¤á¤Æ¡Ö¤¢¤Ã¡×¤È»×¤Ã¤¿¼¡Âè¤Ç¡¢¸¡¾Ú¤ò»î¤ß¤¿¤Î¤Ç¤¹¤¬¡¢¤Ê¤«¤Ê¤«¸·¤·¤¯...m(__)m |
MacBook Pro¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 19:38:23¡¡¡¡
HomePage:»»¥Á¥ã¥ì¡¡¡¡45405 |
Ä̤ꤹ¤¬¤ê¤ÎÃæ1 |
¤¦¡¼¤ó¡Ä
ɽ¤ò½ñ¤¤¤Æ¤¤¤±¤Ð¡Ä ¤Ê¤ó¤Æ¹Í¤¨¤¿Çϼ¯¤¬¤³¤³¤Ë¤¤¤Þ¤¹¡£ |
»»¿ô²¦¹ñ¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 23:39:24¡¡¡¡
HomePage:ËͤοÍÀ¸Ê³Æ®µ¡¡¡¡45406 |
baLLjugglermoka |
¤ä¤Ï¤ê½½Ê¬À¤Ë¤Ä¤¤¤Æ¤Ï³§Íͼ¨¤·¤Æ¤¤¤Þ¤»¤ó¤Í¡£Ëͤϡ¢13¤ò®¹¶¤Ç¸«¤Ä¤±¤Æ¤«¤é¤Ï¡¢¶ñÂÎÎã¤ò¹Í¤¨¤Æ¡¢°ìÈ̲½¤ËÀ®¸ù¤·¤¿¤â¤Î¤Î¡¢¥Ç¥«¤¤¿ô¤Ë¤Ê¤ê.., |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 23:42:53¡¡¡¡
¡¡¡¡45407 |
¥¹¥â¡¼¥¯¥Þ¥ó |
¤è¤¯¤ï¤«¤ê¤Þ¤»¤ó¤Ç¤·¤¿ ^^;
ÁÇ¿ô³Ñ·Á¤Ç¹Í¤¨¤¿¤ê¤·¤Æ¤Þ¤·¤¿¤¬¡Ä¶ö¡¹Æþ¼¼¤Ç¤¤Þ¤·¤¿^^;; #45400 uchinyan¤µ¤ó¤Î¤ï¤«¤ê¤ä¤¹¤¤¤Ç¤¹¢ö À°¿ôÎóÂç¼Åµ¤Ç¡Ä A228137 Numbers that are congruent to {1, 4} mod 12. ¤Ë¡¢a(n) = a(n-1) +a(n-2) -a(n-3) ¤È¤¤¤¦Á²²½¼°¤¬ºÜ¤Ã¤Æ¤Þ¤·¤¿¤¬¡Ä ¤½¤Î°ÕÌ£¤Î²ò¼á¤ï¤«¤é¤º¡Ä |
¡¡¡¡
10·î20Æü¡ÊÌÚ¡Ë 23:59:07¡¡¡¡
¡¡¡¡45408 |
¤ª¡¼¤Á¤ã¤ó |
25¿Í50»î¹ç¤Î½½Ê¬¾ò·ï¤Ï°Ê²¼¤Î¤È¤ª¤ê¡§
(1,2,3,4) (1,5,6,7) (1,8,9,10) (1,11,12,13) (1,14,15,16) (1,17,18,19) (1,20,21,22) (1,23,24,25) (2,5,8,11) (2,6,14,18) (2,7,20,25) (2,9,19,23) (2,10,15,22) (2,12,16,24) (2,13,17,21) (3,5,21,23) (3,6,9,12) (3,7,15,19) (3,8,16,20) (3,10,17,24) (3,11,18,22) (3,13,14,25) (4,5,16,17) (4,6,22,24) (4,7,10,13) (4,8,18,25) (4,9,14,21) (4,11,15,23) (4,12,19,20) (5,9,15,25) (5,10,18,20) (5,12,14,22) (5,13,19,24) (6,8,19,21) (6,10,16,23) (6,11,17,25) (6,13,15,20) (7,8,14,24) (7,9,17,22) (7,11,16,21) (7,12,18,23) (8,12,15,17) (8,13,22,23) (9,11,20,24) (9,13,16,18) (10,11,14,19) (10,12,21,25) (14,17,20,23) (15,18,21,24) (16,19,22,25) ¤Þ¤º 1ÈÖ¤È (2,3,4),(5,6,7),¡Ä¡Ä,(23,24,25) ¤Ç 8ÁȤȤ·¤Þ¤¹¡£ ¤½¤·¤Æ»Ä¤ê¤Î42ÁȤˤĤ¤¤Æ¤Ï¡¢1ÈÖ¤ò½ü¤¤¤¿24¿Í¤ò ¡¡¡¡A:(2,3,4) (5,6,7) ¡¡¡¡B:(8,9,10) (11,12,13) ¡¡¡¡C:(14,15,16) (17,18,19) ¡¡¡¡D:(20,21,22) (23,24,25) ¤Î4¥°¥ë¡¼¥×¤Ëʬ¤±¤Æ¡¢4¿ÍÁȤ¬ A¡ÁD¥°¥ë¡¼¥×¤Î¤½¤ì¤¾¤ì¤Ëʬ¤«¤ì¤ë¥Ñ¥¿¡¼¥ó¤¬ ¡¡¡¡2¿Í¡Ü2¿Í¡§18ÁÈ ¡¡¡¡1¿Í¡Ü1¿Í+1¿Í+1¿Í¡§24ÁÈ ¤È¤Ê¤ë¤È¤³¤í¤Þ¤Ç¹Ê¤ê¹þ¤ó¤Ç¡¢¤¢¤È¤Ï´ª¤Ç¥Ñ¥¿¡¼¥ó¤òºî¤ê¤Þ¤·¤¿¡£ ¼¡¤Ï28¿Í63»î¹ç¤Ç¤¹¤¬¡¢°ìÈÌŪ¤ÊÊýË¡¤Ï¤Þ¤À¤è¤¯¤ï¤«¤ê¤Þ¤»¤ó¡£ |
¡¡¡¡
10·î21Æü¡Ê¶â¡Ë 18:44:27¡¡¡¡
¡¡¡¡45409 |
¤Ë¤ã¤â¡¼·¯ |
¤³¤ó¤Ð¤ó¤ï¡£Ä»¼è¤ÇÃϿ̤¬¤¢¤ê¡¢¤ª½»¤Þ¤¤¤ÎÊý¤¬¤¬¿´ÇۤǤ¹¡£
º£²ó¤Ï¡¢¤¢¤Æ¤º¤Ã¤Ý¤¦¤Ç£´¤ÎÎß¾è¤Ç¹Í¤¨¤¿¤é¡¢ 4096¤È¤«¶¸¤Ã¤¿¿ô»ú¤¬½Ð¤Æ¤·¤Þ¤¤¡¢ÅöÁ³¸íÅú¡£¶ìÀ路¤Þ¤·¤¿¡£ ¿Í¿ô¤È»î¹ç¿ô¤Ç¼°¤òΩ¤Æ¤Æ¹Í¤¨¤Þ¤·¤¿¤¬¡¢¤Á¤ç¤Ã¤È¿ô³Ø¤ËÆþ¤Ã¤Á¤ã¤Ã¤¿¡£ ¡Ö¤³¤Î¿Í¿ô¤ÇËÜÅö¤ËÈï¤é¤º¤ËÁ´°÷ÂÐÀï¤Ç¤¤ë¡×¤È¤¤¤¦½½Ê¬À¤Ï ¸¡¾Ú¤·¤Ê¤«¤Ã¤¿¤Î¤Ç¤¹¤¬¡¢°Ê²¼¤Î¤è¤¦¤Ë¹Í¤¨¤Þ¤·¤¿¡£ ¤Þ¤º¡¢¤¢¤ë¿Í¤Ë¾ÇÅÀ¤òÅö¤Æ¤ë¤È¡ÊA¤È¤¹¤ë¡Ë »î¹ç¤Î¿ô¤ò£î»î¹ç¤È¤·¤Æ¡¢A¤¬ÂÐÀ魯¤ë¿Í¿ô¤Ï£³£î¿Í¡£ ¤è¤Ã¤Æ¡¢Áí¿Í¿ô¤Ï¡¢£³£î¡Ü£±¿Í¡¦¡¦¡¦¡ ¤½¤Î¿Í¿ô¤¬¤½¤ì¤¾¤ì£î»î¹ç¤ò¤ä¤ë¤Î¤À¤«¤é¡¢ »î¹ç¡ß¿Í¿ô¤Ï¡¢¡Ê£³£î¡Ü£±¡Ë£î¡¦¡¦¡¦¢ £±»î¹ç¤¢¤¿¤ê£´¿Í¤Ç¤ä¤ë¤«¤é¡¢ ¿Í¿ô¤Ï¢¡¿£´¡á¡Ê£³£î¡Ü£±¡Ë£î¡¿£´¡¡¡¦¡¦¡¦£¡¡¤³¤ì¤¬À°¿ô¤Ë¤Ê¤ë£î¤òõ¤¹¡£ ¡Ê£³£î¡Ü£±¡Ë£î¤¬£´¤Ç³ä¤ì¤ì¤Ð¤è¤¤¡£ ¤½¤Î¾ò·ï¤Ï£î¢á£°¡¢£±¡Êmod£´¡Ë¡¡£³£î¡Ü£±¢á£° £î¢á£°¡¢£±¡Êmod£´¡Ë¤Ï¡¢¾®¤µ¤¤¤Û¤¦¤«¤é¡¢£±¡¢£´¡¢£µ¡¢£¸¡¢£¹¡¢£±£² ²¼¤«¤é£¶ÈÖÌܤ¬£î¡á£±£²¤È¤Ê¤ë¤«¤é¡¢¿Í¿ô¤Ï¡¤Ë¤¢¤Æ¤Ï¤á¡¢£³£·¿Í °Ê¾å |
¤µ¤¤¤¿¤Þ»Ô±ºÏ¶è¡Ê¼«¾Î¡Ë¡¡¡¡
10·î21Æü¡Ê¶â¡Ë 20:00:34¡¡¡¡
¡¡¡¡45410 |
kyorofumi |
case of 28 people:
1 2 3 4 1 5 6 7 1 8 9 10 1 11 12 13 1 14 15 16 1 17 18 19 1 20 21 22 1 23 24 25 1 26 27 28 2 5 6 7 2 8 9 10 2 11 12 13 2 14 15 16 2 17 18 19 2 20 21 22 2 23 24 25 2 26 27 28 3 5 6 7 3 8 9 10 3 11 12 13 3 14 15 16 3 17 18 19 3 20 21 22 3 23 24 25 3 26 27 28 4 5 6 7 4 8 9 10 4 11 12 13 4 14 15 16 4 17 18 19 4 20 21 22 4 23 24 25 4 26 27 28 5 8 9 10 5 11 12 13 5 14 15 16 5 17 18 19 5 20 21 22 5 23 24 25 5 26 27 28 6 8 9 10 6 11 12 13 6 14 15 16 6 17 18 19 6 20 21 22 6 23 24 25 6 26 27 28 7 8 9 10 7 11 12 13 7 14 15 16 7 17 18 19 7 20 21 22 7 23 24 25 7 26 27 28 8 11 12 13 8 14 15 16 8 17 18 19 8 20 21 22 8 23 24 25 8 26 27 28 9 11 12 13 9 14 15 16 9 17 18 19 9 20 21 22 9 23 24 25 9 26 27 28 10 11 12 13 10 14 15 16 10 17 18 19 10 20 21 22 10 23 24 25 10 26 27 28 11 14 15 16 11 17 18 19 11 20 21 22 11 23 24 25 11 26 27 28 12 14 15 16 12 17 18 19 12 20 21 22 12 23 24 25 12 26 27 28 13 14 15 16 13 17 18 19 13 20 21 22 13 23 24 25 13 26 27 28 14 17 18 19 14 20 21 22 14 23 24 25 14 26 27 28 15 17 18 19 15 20 21 22 15 23 24 25 15 26 27 28 16 17 18 19 16 20 21 22 16 23 24 25 16 26 27 28 17 20 21 22 17 23 24 25 17 26 27 28 18 20 21 22 18 23 24 25 18 26 27 28 19 20 21 22 19 23 24 25 19 26 27 28 20 23 24 25 20 26 27 28 21 23 24 25 21 26 27 28 22 23 24 25 22 26 27 28 23 26 27 28 24 26 27 28 25 26 27 28 |
¡¡¡¡
10·î21Æü¡Ê¶â¡Ë 20:06:54¡¡¡¡
¡¡¡¡45411 |
kyorofumi |
the solution was wrong... sorry |
¡¡¡¡
10·î21Æü¡Ê¶â¡Ë 20:27:16¡¡¡¡
¡¡¡¡45412 |
Halt0 |
37 ¤¬Åú¤¨¤Ç´Ö°ã¤¤¤Ê¤¤¤è¤¦¤Ç¤¹. ¤È¤¤¤¦¤Î¤â, ¤¤¤í¤¤¤í¤ÈÄ´¤Ù¤¿¤È¤³¤í, »²²Ã¼Ô¿ô¤¬ mod 12 ¤Ç 1 ¤Þ¤¿¤Ï 4 ¤ËÅù¤·¤¤¤³¤È¤¬, ÌäÂê¤Î¾ò·ï¤òËþ¤¿¤¹¤è¤¦¤Ê»î¹ç¤ÎÁȤ߹ç¤ï¤»¤¬Â¸ºß¤¹¤ë¤¿¤á¤ÎɬÍ×½½Ê¬¾ò·ï¤Ç¤¢¤ë, ¤È¾ÚÌÀ¤·¤¿¤é¤·¤ÏÀʸ¤ò¸«¤Ä¤±¤¿¤¿¤á¤Ç¤¹. ¤â¤Ã¤È¤â, ¾ÚÌÀ¤òÄɤ¦¤Î¤Ï»ä¤Î¼ê¤Ë;¤ë¤Î¤Ç, ¶½Ì£¤Î¤¢¤ëÊý¤ÏÆɤó¤Ç¤ß¤Æ¤¯¤À¤µ¤¤.
¤Þ¤º, https://en.wikipedia.org/wiki/Steiner_system "A Steiner system with parameters t, k, n, written S(t,k,n), is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block. In an alternate notation for block designs, an S(t,k,n) would be a t-(n,k,1) design." ËÜÌä¤Ï¤³¤Î t=2, k=4 ¤Î¾ì¹ç¤Ë¤¢¤¿¤ê¤Þ¤¹. ¤Ä¤Þ¤ê, Steiner system S(2,4,n), ¤¢¤ë¤¤¤Ï block design ¤Î¸ÀÍդǤ¤¤¨¤Ð 2-(n,4,1) design ¤¬Â¸ºß¤¹¤ë¤è¤¦¤Ê n ¤Î¾ò·ï¤òµá¤á¤ë¤³¤È¤Ë¤Ê¤ê¤Þ¤¹. ¤½¤·¤Æ, ¤³¤ì¤Ë¤Ä¤¤¤Æ½ñ¤«¤ì¤Æ¤¤¤ë¤Î¤¬¼¡¤ÎÏÀʸ¤Ç¤¹. https://projecteuclid.org/euclid.aoms/1177705047 µË¡¤¬¾¯¤·°ã¤¤¤Þ¤¹¤¬, ¤³¤Á¤é¤ÎÏÀʸ¤Î balanced incomplete block design (BIBD) B[k,¦Ë,v] ¤È¤¤¤¦¤Î¤Ï, ÀèÄø¤Î¸ÀÍդǤ¤¤¨¤Ð block design 2-(v,k,¦Ë) ¤Î¤³¤È¤Ç¤¹. ¤ï¤ì¤ï¤ì¤¬ÃΤꤿ¤¤¤Î¤Ï k=4, ¦Ë=1 ¤Î¾ì¹ç, ¤¹¤Ê¤ï¤Á BIBD B[4,1,v] ¤¬Â¸ºß¤¹¤ë¤«¤É¤¦¤«¤Ç¤·¤¿¤¬, 6 ¾Ï¤Î¤Ï¤¸¤á¤ËÄêÍý¤È¤·¤Æ "A necessary and sufficient condition for the existence of BIBD of v elements, with k=4 and any ¦Ë is that ¦Ë(v-1)¢á0 (mod 3) and ¦Ëv(v-1)¢á0 (mod 12)" ¤È¤¢¤ê¤Þ¤¹. ¤³¤³¤«¤é v (º£²ó¤ÎÌäÂê¤Î¡Ö»²²Ã¼Ô¿ô¡×¤Ë¤¢¤¿¤ë) ¤¬ v¢á1,4 (mod 12) ¤òËþ¤¿¤¹¤³¤È¤¬ BIBD B[2,1,v] ¤¬Â¸ºß¤¹¤ë¤³¤È¤ÎɬÍ×½½Ê¬¾ò·ï¤Ç¤¢¤ë¤³¤È¤¬¤ï¤«¤ê¤Þ¤¹. |
¡¡¡¡
10·î22Æü¡ÊÅÚ¡Ë 4:33:07¡¡¡¡
¡¡¡¡45413 |
ðþí¦ |
#45413
ÏÀʸ¸«¤Ä¤±¤Æ¤¯¤À¤µ¤Ã¤Æ¤¢¤ê¤¬¤È¤¦¤´¤¶¤¤¤Þ¤¹¡£Áȹ礻¥Ç¥¶¥¤¥óÍýÏÀ¤Ç¤¹¤Í¡Ê²¿Ç¯¤«Á°¤Ë¤³¤ÎʬÌî¤ÎÀìÌç²È¤Î¹Ö±é¤òʹ¤¤¤¿¤³¤È¤¬¤¢¤ë¤Î¤Ç¤¹¤¬¤µ¤Ã¤Ñ¤ê¤ï¤«¤é¤Ê¤«¤Ã¤¿¤Î¤ò³Ð¤¨¤Æ¤¤¤Þ¤¹¡Ë¡£ |
¡¡¡¡
10·î22Æü¡ÊÅÚ¡Ë 11:28:58¡¡¡¡
¡¡¡¡45414 |
uchinyan |
#45413
Halt0¤µ¤ó¡¤¾ðÊó¤ò¤¢¤ê¤¬¤È¤¦¤´¤¶¤¤¤Þ¤¹¡£ ¤Ê¤ë¤Û¤É¡¤ÏÀʸ¤¬¤¢¤ë¤Î¤Ç¤¹¤«¡£¤Ê¤«¤Ê¤«¿¼±ó¤Î¤è¤¦¤Ç¤¹¤Í¡£ »þ´Ö¤ò¸«¤Ä¤±¤Æ¾¯¤·¸«¤Æ¤ß¤¿¤¤µ¤¤â¤·¤Þ¤¹¤¬¡¤ ¤³¤¦¤¤¤¦Ê¬Ìî¤ÏÁ´¤¯¤ÎÁǿͤǤ¹¤·¡¤ºÇ¶á¤ÏÂç³Ø¤Î¶µÍÜ¥ì¥Ù¥ë¤Î¿ô³Ø¤â²ø¤·¤¯¤Ê¤Ã¤Æ¤ª¤ê¡¤ ÅþÄìʬ¤«¤ê¤½¤¦¤Ë¤Ê¤¤´¶¤¸ (^^; ¤Ç¤â¡¤¼è¤ê´º¤¨¤º¡¤º£²ó¤ÎÅú¤¨¤ÇÂç¾æÉפ½¤¦¡¤¤Èʬ¤«¤Ã¤Æ¤è¤«¤Ã¤¿¤Ç¤¹¡£ |
¡¡¡¡
10·î22Æü¡ÊÅÚ¡Ë 15:11:18¡¡¡¡
¡¡¡¡45415 |
Halt0 |
¤³¤ó¤Ë¤Á¤Ï.
¤â¤¦ÆüÍˤʤΤǤ´Í÷¤Ë¤Ê¤Ã¤Æ¤¤¤ëÊý¤â¾¯¤Ê¤¤¤«¤â¤·¤ì¤Þ¤»¤ó¤¬, ·ë¶Éµ¤¤Ë¤Ê¤Ã¤¿¤Î¤Ç, Ê̤λñÎÁ¤ò»²¹Í¤Ë¤·¤Æ, ¿Í¿ô n ¤¬ n=25,28,37 ¤Î¾ì¹ç¤Î²ò¤ò¹½À®¤·¤Æ¤ß¤Þ¤·¤¿. D. Stinson. Combinatorial Designs: Constructions and Analysis http://mathscinet.ru/files/StinsonD.pdf ¤ò»²¾È¤·¤Þ¤·¤¿. ľÀܺ£²ó¤ÎÌäÂê¤È¤«¤«¤ï¤ê¤¬¤¢¤ë¤Î¤Ï p.167~ ¤Ç¤¹. ¾åµ pdf ¤òÆɤó¤Ç¤¤¤¿¤À¤¤¤¿¤Û¤¦¤¬Áᤤ¤«¤â¤·¤ì¤Þ¤»¤ó¤¬, ¤»¤Ã¤«¤¯¤Ê¤Î¤Ç¤³¤³¤Ë¹½À®¤ª¤è¤Ó¤½¤Î¾ÚÌÀ¤ò½ñ¤¤¤Æ¤ß¤Þ¤¹. ·²ÏÀ¤Î½éÊâŪ¤ÊÃ챤¬¤¢¤ì¤ÐÍý²ò¤¹¤ë¤³¤È¤¬²Äǽ¤Ç¤¹. (#45413 ¤Ë½ñ¤¤¤¿¤È¤ª¤ê, ¿Í¿ô n ¤¬ n¢á1,4 (mod 12) ¤òËþ¤¿¤¹¤³¤È¤¬É¬Í×½½Ê¬¤é¤·¤¯, ¾åµ pdf ¤â¤³¤Î¤³¤È¤ò¾ÚÌÀ¤·¤Æ¤¤¤ë¤ß¤¿¤¤¤Ê¤Î¤Ç¤¹¤¬, »ä¤Ï¤½¤³¤Þ¤Ç¤Ï¥Õ¥©¥í¡¼¤Ç¤¤Æ¤¤¤Þ¤»¤ó. ¤Ç¤¹¤¬, ¾åµ»ñÎÁ¤Ç¤Ï¤½¤Î¤³¤È¤ò¾ÚÌÀ¤¹¤ë¤¿¤á¤Î¥¹¥Æ¥Ã¥×¤È¤·¤Æ, n=13,16,25,28,37 ¤Ç¸ÄÊ̤˶ñÂÎÎã¤ò¹½À®¤·¤Æ¤¤¤Þ¤¹. ·ë¶É, ¤³¤Î¤¢¤¿¤ê¤ÏÅý°ìŪ¤Ê¥¢¥ë¥´¥ê¥º¥à¤Ç¤Ï¼è¤ê°·¤¨¤Ê¤¤¤È¤¤¤¦¤³¤È¤Ê¤Î¤Ç¤·¤ç¤¦. ¤Ê¤Î¤Ç, n=25,28,37 ¤Î¹½À®¤Î¤ßÆɤó¤Ç¤ß¤Þ¤·¤¿. (n=25 ¤Î²ò¤Ï´û¤Ë·Ç¼¨ÈĤËÄ󼨤µ¤ì¤Æ¤¤¤Þ¤¹¤¬, n=37 ¤È¹½À®¤Î»ÅÊý¤¬Æ±ÍͤʤΤÇ, Æɤߤޤ·¤¿) ¤Ê¤ª, ¼Ð¤áÆɤߤʤΤÇ, ¾ÚÌÀ¤Ë¤Ï»ä¤Î¼ê¤¬Æþ¤Ã¤Æ¤ª¤ê, ¤·¤¿¤¬¤Ã¤Æ¸µ¤Î»ñÎÁ¤Ë¤Ï¤Ê¤¤¸í¤ê¤¬¤¢¤ë²ÄǽÀ¤¬¤¢¤ê¤Þ¤¹.) ---------------------------------------- [µË¡] ¡¦½¸¹ç S ¤Î¸µ¤Î¿ô¤ò |S| ¤È½ñ¤¯. ¡¦À°¿ô·² Z ¤Î n ¤òË¡¤È¤·¤¿¾ê;Îà·²¤ò Z/nZ ¤È½ñ¤¯. ¡¦·² G_1 ¤È G_2 ¤ÎľÀѤò G_1 ¡ß G_2 ¤È½ñ¤¯. [ÄêµÁ] ͸½¸¹ç¤ÎÁÈ (X,¦Â) ¤¬ 2-(n,4,1) design ¤Ç¤¢¤ë¤È¤Ï, ¡¦¡Ô¾ò·ï0¡Õ |X|=n ¡¦¡Ô¾ò·ï1¡Õ ³Æ B¢º¦Â ¤ËÂФ· B¢¾X, |B|=4 ¡¦¡Ô¾ò·ï2¡Õ Ǥ°Õ¤Î x,y¢ºX, x¡ây ¤ËÂФ·, {x,y}¢¾B ¤Ê¤ë B¢º¦Â ¤¬¤¿¤À 1 ¤Ä¸ºß¤¹¤ë ¤òËþ¤¿¤¹¤³¤È¤ò¤¤¤¦. 2-(n,4,1) design ¤ò n=25,28,37 ¤Î¤È¤¤Ë¹½À®¤·¤è¤¦. (X ¤¬»²²Ã¼Ô¤Î½¸¹ç, n ¤¬¤½¤Î¿Í¿ô, ³ÆB¢º¦Â ¤¬¹Ô¤ï¤ì¤¿»î¹ç¤ÎÁȤˤ¢¤¿¤ë.) ¡Ún=25 ¤Î¤È¤¡Û G = (Z/5Z) ¡ß (Z/5Z) ¤È¤·, a[1,1]=(0,0), a[1,2]=(0,1), a[1,3]=(1,0), a[1,4]=(2,2) a[2,1]=(0,0), a[2,2]=(0,2), a[2,3]=(2,0), a[1,4]=(4,4) ¤ò G ¤Î¸µ¤È¤¹¤ë. [ÊäÂê1] Ǥ°Õ¤Î g¢ºG, g¡â0 ¤ËÂФ· ¤¿¤À 1 ¤Ä¤Î i¢º{1,2} ¤È j,k¢º{1,2,3,4}, j¡âk ¤¬¤¢¤Ã¤Æ g=a[i,j]-a[i,k] ¤Ç¤¢¤ë. [¾ÚÌÀ] 2¡ß4¡ß3=24 Ä̤ê¤Î i,j,k ¤ÎÁȤˤĤ¤¤Æ¼ÂºÝ¤Ë·×»»¤·¤Æ³Î¤«¤á¤ë¤À¤±¤Ê¤Î¤Çά. ¢¢ i=1,2, g¢ºG ¤ËÂФ·, B[i,g] = {a[i,1]+g, a[i,2]+g, a[i,3]+g, a[i,4]+g} ¤ÈÄê¤á¤ë. X = G, ¦Â = {B[i,g] |i¢º{1,2}, g¢ºG} ¤È¤¹¤ë. ¤³¤Î¤È¤¡Ô¾ò·ï0¡Õ¡Ô¾ò·ï1¡Õ¤ÏÌÀ¤é¤«. ¡Ô¾ò·ï2¡Õ¤ò¼¨¤½¤¦. x,y¢ºX, x¡ây ¤È¤¹¤ë. ÊäÂê1¤è¤ê, ¤¿¤À 1 ¤Ä¤Î i,j,k (j¡âk) ¤¬¤¢¤Ã¤Æ x-y=a[i,j]-a[i,k] ¤Ç¤¢¤ë. ¤½¤³¤Ç g=x-a[i,j] ¤È¤ª¤±¤Ð, x=a[i,j]+g, y=a[i,k]+g ¤è¤ê {x,y}¢¾¦Â[i,g] ¤Ç¤¢¤ê, ¤Þ¤¿¹½À®¤Î»ÅÊý¤«¤é, ¤³¤Î¤è¤¦¤Ê ¦Â[i,g] ¤Ï¤¿¤À 1 ¤Ä¤Ë·è¤Þ¤ë. ¤è¤Ã¤Æ (X,¦Â) ¤Ï 2-(25,4,1) design ¤Ç¤¢¤ë. ¡Ún=37 ¤Î¤È¤¡Û G=Z/37Z ¤È¤·, a[1,1]=0, a[1,2]=1, a[1,3]=3, a[1,4]=24 a[2,1]=0, a[2,2]=10, a[2,3]=18, a[2,4]=30 a[3,1]=0, a[3,2]=4, a[3,3]=26, a[3,4]=32 ¤ò G ¤Î¸µ¤È¤¹¤ë. n=25 ¤Î¤È¤¤ÈƱÍͤÎÊäÂê (i¢º{1,2,3} ¤ÈÊѤ¨¤ë¤À¤±) ¤¬À®¤êΩ¤Á, ¤½¤³¤«¤éƱÍͤ˹½À®¤Ç¤¤ë. ¡Ún=28 ¤Î¤È¤¡Û n=25,37 ¤È¤Ï¾¯¤·°ã¤Ã¤¿¹½À®¤ò¤¹¤ë. G = (Z/3Z) ¡ß (Z/3Z) ¡ß (Z/3Z) ¤È¤·, a[1,1]=(0,0,0), a[1,2]=(0,2,0), a[1,3]=(1,1,1), a[1,4]=(2,1,1) a[2,1]=(0,0,0), a[2,2]=(1,0,2), a[2,3]=(0,1,2), a[1,4]=(1,1,0) ¤ò G ¤Î¸µ¤È¤¹¤ë. [ÊäÂê2] Ǥ°Õ¤Î g¢ºG, g¡â0 ¤ËÂФ· g=a[i,j]-a[i,k] ¤È¤Ê¤ë¤è¤¦¤Ê i,j,k (j¡âk) ¤Ï¹â¡¹ 1 ¤Ä¤·¤«¤Ê¤¤. (¢¨ 1 ¤Ä¤â¤Ê¤¤¾ì¹ç¤â¤¢¤ë) [¾ÚÌÀ] ·×»»¤¹¤ë¤À¤±¤Ê¤Î¤Çά. ¢¢ G ¤Ë´Þ¤Þ¤ì¤Ê¤¤¸µ ¡ç ¤ò¹Í¤¨, X = G ¢À {¡ç} ¤È¤ª¤¯. i=1,2, g¢ºG ¤ËÂФ·, B[i,g] = {a[i,1]+g, a[i,2]+g, a[i,3]+g, a[i,4]+g} ¤ÈÄê¤á, ¤Þ¤¿, a,b¢ºZ/3Z ¤ËÂФ· B'[a,b] = {(a,b,0),(a,b,1),(a,b,2),¡ç} ¤È¤ª¤¯. ¤³¤Î¤È¤, B[i,g] ¤Î·Á¤Î¸µ (2¡ß27=54 ¸Ä) ¤ª¤è¤Ó B'[a,b] ¤Î·Á¤Î¸µ (9 ¸Ä), ·× 63 ¸Ä¤Î¸µ¤«¤é¤Ê¤ë ¦Â ¤ò¹Í¤¨¤ë¤È, (X,¦Â) ¤Ï¾ò·ï¤òËþ¤¿¤¹. ¡Ô¾ò·ï0¡Õ¡Ô¾ò·ï1¡Õ¤ÏÌÀ¤é¤«¤Ê¤Î¤Ç¡Ô¾ò·ï2¡Õ¤ò¼¨¤½¤¦. [ÊäÂê3] ³Æ B_1,B_2¢º¦Â (B_1¡âB_2) ¤ËÂФ·, ¤½¤Î¶¦ÄÌÉôʬ¤¬ 2 ¤Ä°Ê¾å¤Î¸µ¤ò´Þ¤Þ¤Ê¤¤. [¾ÚÌÀ] B_1, B_2 ¤Î¤¤¤º¤ì¤â B'[a,b] ¤Î·Á¤ò¤·¤Æ¤¤¤Ê¤¤¾ì¹ç, ÊäÂê2¤«¤é (n=27 ¤Î¤È¤¤Î¡Ô¾ò·ï2¡Õ¤Î¾ÚÌÀ¤ÈƱ¤¸¤è¤¦¤Ë¤·¤Æ) ¼¨¤»¤ë. ¤Þ¤¿, ¤¤¤º¤ì¤â B'[a,b] ¤Î·Á¤ò¤·¤Æ¤¤¤ë¾ì¹ç, ¶¦ÄÌÉôʬ¤ÏÌÀ¤é¤«¤Ë ¡ç ¤Î¤ß¤ò´Þ¤à. ¤·¤¿¤¬¤Ã¤Æ B'[a,b] ¤È B[i,g] ¤Î¶¦ÄÌÉôʬ¤Î¸µ¤¬ 1 ¤Ä°Ê²¼¤Ç¤¢¤ë¤³¤È¤ò¼¨¤»¤Ð¾ÚÌÀ¤¬½ª¤ï¤ë¤¬, ¤³¤ì¤Ï i,g ¤ò¸ÇÄꤷ¤¿¤È¤¤Ë B[i,g] ¤Î 2 ¤Ä¤Î°Û¤Ê¤ë¸µ¤ò (a_1,b_1,c_1), (a_2,b_2,c_2) ¤È¤¹¤ì¤Ð (a_1,b_1)¡â(a_2,b_2) ¤È¤Ê¤ë¤³¤È¤«¤éÌÀ¤é¤«¤Ç¤¢¤ë. ¢¢ ÊäÂê3¤è¤ê, ¡Ô¾ò·ï2¡Õ ¤ò¼å¤¯¤·¤¿¾ò·ï, ¡ÖǤ°Õ¤Î x,y¢ºX, x¡ây ¤ËÂФ·, {x,y}¢¾B ¤Ê¤ë B¢º¦Â ¤Ï, ¸ºß¤¹¤ë¤È¤¹¤ì¤Ð¤¿¤À 1 ¤Ä¤Ç¤¢¤ë¡× ¤¬¤¤¤¨¤ë. ¤³¤³¤Ç, |X|=28 ¤è¤ê, x,y¢ºX, x¡ây ¤È¤Ê¤ë¤è¤¦¤Ê x,y ¤ÎÁȤ߹ç¤ï¤»¤Ï, 28¡ß27/2=378 Ä̤ꤢ¤ë¤³¤È¤È, |¦Â|=63 ¤è¤ê, B¢º¦Â ¤ª¤è¤Ó {x,y}¢¾B (x¡ây) ¤Î¤È¤ê¤«¤¿¤Ï |¦Â|¡ß4C2=378 Ä̤ꤢ¤ë¤³¤È¤«¤é, ·ë¶É 1 ÂÐ 1 Âбþ¤Ë¤è¤ê¡Ô¾ò·ï2¡Õ¤½¤Î¤â¤Î¤¬¤¤¤¨¤ë. ¤è¤Ã¤Æ (X,¦Â) ¤Ï 2-(28,4,1) design ¤Ç¤¢¤ë. ---------------------------------------- Ĺʸ¼ºÎ餷¤Þ¤·¤¿. |
¡¡¡¡
10·î23Æü¡ÊÆü¡Ë 2:35:00¡¡¡¡
¡¡¡¡45417 |
Ä̤ꤹ¤¬¤ê¤ÎÃæ1 |
#45417
¤Ê¤ë¤Û¤É¡ª |
»»¿ô²¦¹ñ¡¡¡¡
10·î23Æü¡ÊÆü¡Ë 9:51:25¡¡¡¡
HomePage:ËͤοÍÀ¸Ê³Æ®µ¡¡¡¡45418 |
¿åÅÄ£Ø |
¤´Ìµº»ÂÁ¤·¤Æ¤Þ¤¹¡£¶ìÏ«¤·¤Þ¤·¤¿¤¬¡¢¤³¤ì¤Ç¤¤¤¤¤ó¤Ç¤¹¤Í¡£¥¦¥Á¥Ë¥ä¥ó¤µ¤óƱÍͤ˸¡¾Ú¤Ï½ÐÍ褺¡¢ËÜÅö¤Ê¤Î¤«¡¢¥â¥ä¥â¥ä»Ä¤ê¤Þ¤¹¡£ |
¡¡¡¡
10·î25Æü¡Ê²Ð¡Ë 22:55:31¡¡¡¡
¡¡¡¡45419 |
¿åÅÄX |
¤¤¤Á¤ª¤¦»ä¤Î²òË¡¤Ç¤¹¤¬¡¢±ß¾õ¤Ën¸Ä¤ÎÅÀ¤ò¤È¤Ã¤Æ¡¢¤½¤ì¤¾¤ì¤ÎÅÀ¤Ç¤À¤Ö¤é¤Ê¤¤»Í³Ñ·Á¤¬¤Ç¤¤ë¤Î¤À¤«¤é¡¢n¤Ï£³¤ÎÇÜ¿ô¡£°ì¸Ä¤ÎÅÀ¤Ç¤Ä¤¯¤ë»Í³Ñ·Á¤Î¿ô¤Ï(n-1)/3 ¤³¤ì¤Ën¤ò¤«¤±¤Æ¤½¤ì¤¾¤ì¤Î»Í³Ñ·Á¤¬£´²ó¤À¤Ö¤ë¤«¤é¡¢n(n-1)/12 ¤¬À°¿ô¤Ç¤Ê¤¤¤È¤¤¤±¤Ê¤¤¡£¡¡¾åµÆó¤Ä¤òËþ¤¿¤¹¿ô¡£
¤³¤Á¤é¤ËºÜ¤ë¤Î¤Ï¤È¤Æ¤âµ×¤·¤Ö¤ê¡¢°ìÅÙ¥ª¥Õ¥«¥¤¤âÂçºå¤Ç»²²Ã¤µ¤»¤Æ¤¤¤¿¤À¤¤Þ¤·¤¿¡£¶½Ì£¿¼¤¤ÌäÂꤢ¤ë¤È²ò¤³¤¦¤È¤·¤Þ¤¹¤¬¡¢Á°²ó¤Ï£±£°£°°Ê²¼¤Î´ñ¿ô¤ò¤«¤±¤¢¤ï¤»¤Æ²¼£³·å¤ÎÌäÂê¡£¡¡¡¡¤Þ¤¿¤è¤í¤·¤¯¡Á¡£ |
¡¡¡¡
10·î26Æü¡Ê¿å¡Ë 8:27:33¡¡¡¡
¡¡¡¡45420 |
»ç¤Îé¬é¯¤Î¿Í |
k(3k+1)/4¤¬À°¿ô¤Ë¤Ê¤ëɬÍ×¾ò·ï¤òµá¤á¤Æ£¶ÈÖÌܤ˾®¤µ¤¤¿ô¤ò²óÅú¤·¤Þ¤·¤¿¡£
½½Ê¬À¤Î³Îǧ¤Ï¡¢4¿Í¡¢13¿Í¡¢16¿Í¤Þ¤Ç¤ä¤ê¤Þ¤·¤¿¡£ »Å»ö¤ÈË¿Âç²ñ¤ÇË»¤·¤¯¤Æ¡¢²òÅú¤®¤ê¤®¤ê¤Ë¤Ê¤ê¤Þ¤·¤¿¡£ |
¡¡¡¡
10·î26Æü¡Ê¿å¡Ë 22:46:45¡¡¡¡
¡¡¡¡45421 |
»ç¤Îé¬é¯¤Î¿Í |
¢ÅöÁ³¡¢3k+1¤Î£¶ÈÖÌܤΤ³¤È¡£
Ť¤´Ö¡¢13¤Î¼¡¤ò´Ö°ã¤¨¤Æ¤¤¤Æ¡¢16¤ò¸«Íî¤È¤·¤Æ¤¤¤Þ¤·¤¿¡£ |
¡¡¡¡
10·î26Æü¡Ê¿å¡Ë 22:48:47¡¡¡¡
¡¡¡¡45422 |
Ä̤ꤹ¤¬¤ê¤ÎÃæ1 |
¹¹¿·¤Þ¤À¤«¤Ê¡© |
»»¿ô²¦¹ñ¡¡¡¡
10·î27Æü¡ÊÌÚ¡Ë 0:03:17¡¡¡¡
HomePage:ËͤοÍÀ¸Ê³Æ®µ¡¡¡¡45423 |
baLLjugglermoka |
¤¢¤ì¡¢¹¹¿·¤µ¤ì¤Þ¤»¤ó¤Í¡£ |
¡¡¡¡
10·î27Æü¡ÊÌÚ¡Ë 0:04:11¡¡¡¡
¡¡¡¡45424 |
¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§ |
º£½µ¤Ï¤ªµÙ¤ß¤Ç¤·¤ç¤¦¤«¡£¤·¤Ð¤é¤¯¤·¤¿¤é¤Þ¤¿¸«¤ËÍè¤Æ¤ß¤Þ¤¹¡£ |
¡¡¡¡
10·î27Æü¡ÊÌÚ¡Ë 0:05:39¡¡¡¡
¡¡¡¡45425 |
̾Á° |
¥Þ¥µ¥ë¤µ¤ó¤â¤ªË»¤·¤«¤Ã¤¿¤é̵Íý¤ò¤»¤º¤Ë |
¡¡¡¡
10·î27Æü¡ÊÌÚ¡Ë 0:09:14¡¡¡¡
¡¡¡¡45426 |