¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§ |
19+22+43+46=130
±£¤ì¤ë¿ô¤Î¹ç·×¤¬3¤ÎÇÜ¿ô¤Ê¤Î¤Ç»Ä¤ë°ì¥Þ¥¹¸õÊä¤Ï3¤Ç³ä¤Ã¤Æ1;¤ë¿ô¡£ ÂоÎÀ¤Ç¾Ã¤¨¤ë¤â¤Î¤ò½ü¤¯¤ÈºÇ½é¤Î¼°¤Î4¤Ä¤¬»Ä¤ê¤Þ¤¹¡£ |
¡¡¡¡
3·î10Æü¡ÊÌÚ¡Ë 0:07:42¡¡¡¡
¡¡¡¡44243 |
¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§ |
¤Á¤Ê¤ß¤Ë°ÊÁ°¤Ë¤Û¤ÜƱ¤¸ÌäÂ꤬¤¢¤Ã¤¿¤Î¤ò»×¤¤½Ð¤·¤Æ²ò¤¤Þ¤·¤¿¡£ |
¡¡¡¡
3·î10Æü¡ÊÌÚ¡Ë 0:09:39¡¡¡¡
¡¡¡¡44244 |
¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§ |
ºÇ¸å¤Î¤Ò¤È¤Ä˺¤ì¤Æ¤Þ¤·¤¿¡¢¤¢¤È19¤Ç²Äǽ¤Ê¤Î¤ò¼ÂºÝ¤Ëʤ٤ƳÎǧ¤·¤Æ½ªÎ»¤Ç¤¹¡£
¥Ç¡¼¥¿ÅÐÏ¿¤Þ¤À¤ä¤Ã¤Æ¤Ê¤¯¤Æ½¤Àµ¤Ç¤¤Þ¤»¤ó¤Ç¤·¤¿¡£ |
¡¡¡¡
3·î10Æü¡ÊÌÚ¡Ë 0:13:23¡¡¡¡
¡¡¡¡44245 |
·Ê |
http://www.sansu.org/used-html/index947.html |
¡¡¡¡
3·î10Æü¡ÊÌÚ¡Ë 0:15:39¡¡¡¡
¡¡¡¡44246 |
¤à¤é¤«¤ß |
#44246
¤É¤³¤«¤Ç¸«¤¿¤³¤È¤¬¤¢¤ë¤È»×¤Ã¤¿¤é... ¼«Ê¬¤¬¤³¤Î¼ê¤ÎÌäÂê¤òÆÀ°Õ¤Ê¤Î¤À¤È¤ï¤«¤ê¤Þ¤·¤¿¡Ê¾Ð¡Ë |
¡¡¡¡
3·î10Æü¡ÊÌÚ¡Ë 0:21:53¡¡¡¡
¡¡¡¡44247 |
º£Ç¯¤«¤é¹âÎð¼Ô |
Âè947²ó¤ÎÌäÂê¤ÈÎà»÷¤Ç¡¢8¡ß8¤Ï¡¢#43759¤Ë½ñ¤¹þ¤ó¤À¤â¤Î¤Ç¤·¤¿¡£
²ó¤ê¤«¤é2¥Þ¥¹¤º¤Ä¤òºï¤Ã¤Æ¡¢4¡ß4¤Î4¶ù¡£ ¤¬¡¢Á°¤ÈƱ¤¸¤è¤¦¤Ë´Ö°ã¤¨¤Æ¡¢¥Þ¥¹¤Î¸Ä¿ô4¸Ä¤òÁ÷¤Ã¤Æ¤¤¤Þ¤·¤¿¡£¿ÊÊ⤷¤Æ¤¤¤Ê¤¤¥Ê¥¡ |
¡¡¡¡
3·î10Æü¡ÊÌÚ¡Ë 1:12:18¡¡¡¡
¡¡¡¡44248 |
¥¹¥â¡¼¥¯¥Þ¥ó |
̵Íý¤«¤È»×¤¤¤Þ¤·¤¿¤¬¡Ä^^;
#44243 ¥Ù¥ë¥¯¡¦¥«¥Ã¥Á¥§¤µ¤ó¤Î >±£¤ì¤ë¿ô¤Î¹ç·×¤¬3¤ÎÇÜ¿ô¤Ê¤Î¤Ç»Ä¤ë°ì¥Þ¥¹¸õÊä¤Ï3¤Ç³ä¤Ã¤Æ1;¤ë¿ô¡£ >ÂоÎÀ¤Ç¾Ã¤¨¤ë¤â¤Î¤ò½ü¤¯¤ÈºÇ½é¤Î¼°¤Î4¤Ä¤¬»Ä¤ê¤Þ¤¹¡£ ¤Ê¤ë¤Û¤É¤Ç¤¹!! ¤¢¤ë¤Ê¤é...ÅÀÂоΤÊ4¸Ä¤ÎÏÂ=130¤ÎÇÜ¿ô ¤Ç¤¹¤Í¡Ä |
¶â¨À§¶õ ^^;v¡¡¡¡
3·î10Æü¡ÊÌÚ¡Ë 1:15:12¡¡¡¡
¡¡¡¡44249 |
¤¢¤á¤¤ |
¼ÂºÝ¤Ò¤È¤Ä¤ä¤Ã¤Æ¤ß¤Æ£´£¶¤¬»Ä¤Ã¤¿¤Î¤Ç¡¢ÂоÎÀ¤«¤é£±£¹¡¤£²£²¡¤£´£³¤â»Ä¤ë¤«¤éºÇÄ㣱£³£°¡¢¤Ç¤â¤³¤ì°Ê³°¤Ï¤Ê¤¤¤Î¤«¤Ê¤¡¡¦¡¦¡¦¤È¡¢¤É¤³¤«¤Ç¤³¤ó¤ÊÉ÷¤Ë¹Í¤¨¤¿¤³¤È¤¢¤ë¤Ê¤¡¤È»×¤¤¤Ê¤¬¤é¤â¸«¤Ä¤±¤é¤ì¤º¤³¤³¤ËÆþ¤Ã¤Æ¤ß¤ë¤È¡¦¡¦¡¦
»÷¤¿²áµîÌ䤬¤¢¤ê¡¢¤½¤Î¤È¤¤â¡Ö±£¤ì¤ë¿ô¤ÎϤ¬£³¤ÎÇÜ¿ô¡×¤Ë´¶¿´¤·¤¿¤³¤È¤ò»×¤¤½Ð¤·¤Þ¤·¤¿¡£¡Ê¥À¥á¤À¡¢³Ð¤¨¤é¤ì¤Ê¤¤¤È¤¤¤Ã¤¿¥Þ¥¤¥Ê¥¹»×¹Í¤ÏËÜÅö¤Ëµ²±¤òÁ˳²¤¹¤ë¤½¤¦¤Ç¤¹¤¬¡ËÆü¡¹¿·Á¯¤Ê¤Î¤â¤É¤¦¤«¤Ê¤¡¤ÎÌäÂê¤Ç¤·¤¿¡£ |
¡¡¡¡
3·î10Æü¡ÊÌÚ¡Ë 8:41:34¡¡¡¡
¡¡¡¡44250 |
ÌÀÆü¤Î¤¿¤á¤Ë |
¼Â¸³¤·¤ÆÂоÎÀ¤ÇÅú¤¨¤ò½Ð¤·¤Þ¤·¤¿¡£¡£¡£ |
̧Ì̻ԡ¡¡¡
3·î10Æü¡ÊÌÚ¡Ë 8:56:07¡¡¡¡
¡¡¡¡44251 |
¼¡ÏºÄ¹ |
¤Ê¤ó¤È¤Ê¤¯¡¢¿¿¤óÃæ¤Î4¤Ä¤Ë¤Ê¤ë¤Î¤«¤Ê¤¡¤Ã¤Æ´¶¤¸¤Ç¡¢130¤Çǧ¾Ú¡£°ìȯÀµ²ò¤À¤Ã¤¿¡£´ò¤·¤¤¡£
Á´¤¯º¬µò¤Ê¤·¤È¸À¤¦¤ï¤±¤Ç¤Ï¤¢¤ê¤Þ¤»¤ó¤¬·ë¹½¡¢´ª¤ÇÅö¤¿¤ë¤â¤Î¤Ç¤¹¡£ |
¡¡¡¡
3·î10Æü¡ÊÌÚ¡Ë 8:57:42¡¡¡¡
¡¡¡¡44252 |
uchinyan |
¤Ï¤¤¡¤¤³¤ó¤Ë¤Á¤Ï¡£¤µ¤Æ¡¤º£²ó¤ÎÌäÂê¤Ï¡¥¡¥¡¥
ºÇ½é¤Ë¿Þ¤ò¸«¤Æ¡¤¤¦¤Ø¡¼ÌÌÅݤ½¤¦¤ÊÌäÂꡤ¤È»×¤Ã¤¿¤Î¤Ç¤¹¤¬¡¤ÌäÂêʸ¤òÆɤó¤Ç¡¤¤Ê¤¡¡¼¤ó¤À¡¤¾¯¤·Á°¤ËÎàÂ꤬¤¢¤Ã¤¿¤¸¤ã¤ó¡¤¤È¤¤¤¦´¶¤¸¤Ç¤·¤¿¡£ °ÊÁ°¤è¤ê¤â°×¤·¤¤¤È»×¤¤¤Þ¤¹¡£°ÊÁ°¤ÎÌäÂ꤬²ò¤±¤¿¿Í¤Ï°×¤«¤Ê¡¤¤È»×¤¤¤Þ¤¹¤¬¡¤¤½¤¦¤Ç¤Ê¤¤¿Í¤ä½é¸«¤Î¿Í¤Ë¤ÏÆñ¤«¤Ê¤¡¡¤¤È¤â»×¤¤¤Þ¤¹¡£ Àµ²òΨ¤¬¹â¤¤¤Î¤Ï¡¤²ò¤±¤Ê¤¤¿Í¤Ï´ª¤Ç¤ÏÁ÷¤ê¤Å¤é¤¯¡¤²ò¤±¤¿¿Í¤Ï´Ö°ã¤¤¤Ë¤¯¤¤¡¤¤Î¤Ç¤·¤ç¤¦¤«¡£ ¤³¤ó¤Ê´¶¤¸¤Ç¡£ (²òË¡1)¡¡¤Þ¤¡»»¿ô¤Ç¤·¤ç¤¦ ¿Þ£±¤Î 8 * 8 ¤Î¥Þ¥¹Ìܤ˿ޣ²¤Î 1 * 3 ¤ÎĹÊý·Á¤Î¥Þ¥¹Ìܤò½Ä¤Ë¤ª¤¤¤Æ¤â²£¤Ë¤ª¤¤¤Æ¤âĹÊý·Á¤Î¥Þ¥¹ÌܤËʤ¤ï¤ì¤ë¿ô¤ÎÏÂ¤Ï 3 ¤ÎÇÜ¿ô¤Ç¤¹¡£ ¤½¤³¤Ç¡¤Ä¹Êý·Á¤ò²Äǽ¤Ê¸Â¤êÉߤµÍ¤á¤¿¾ì¹ç¤Îʤ¤ï¤ì¤ë¿ô¤ÎϤâ 3 ¤ÎÇÜ¿ô¤Ç¤¹¡£ °ìÊý¤Ç¡¤8 * 8 ¤Î¥Þ¥¹ÌܤÎÃæ¤Î¿ô 1 ¡Á 64 ¤ÎÁíÏÂ¤Ï (64 * 65)/2 = 2080 = 3 * 693 + 1 ¤è¤ê 3 ¤Ç³ä¤Ã¤Æ 1 ;¤ë¿ô¤Ê¤Î¤Ç¡¤ »Ä¤ë£±¤Ä¤Î¿ô¤Ï 3 ¤Ç³ä¤Ã¤Æ 1 ;¤ë¿ô¤Ç¤Ê¤±¤ì¤Ð¤Ê¤ê¤Þ¤»¤ó¡£ ¤¿¤À¤·¡¤¿Þ¤Ï¡¤º¸±¦¡¤¾å²¼¡¤90¡ë²óž¡¤¤Ë´Ø¤·¤ÆÂоΤʤΤǡ¤¤¢¤ëÇÛÃÖ¤¬¼Â¸½²Äǽ¤Ê¤é¤Ð¤½¤ì¤òÂоΰÜÆ°¤·¤¿ÇÛÃÖ¤â¼Â¸½²Äǽ¤Ç¤¹¡£ ¤½¤³¤Ç¡¤3 ¤Ç³ä¤Ã¤Æ 1 ;¤ë¿ô¤Ç¤¢¤Ã¤Æ¤âÂоΰÜÆ°¤Ë¤è¤Ã¤ÆÂбþ¤¹¤ë°ÌÃ֤οô¤¬ 3 ¤Ç³ä¤Ã¤Æ 1 ;¤ë¿ô¤Ç¤Ê¤¤¤È»Ä¤»¤Ê¤¤¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£ ¤Ä¤Þ¤ê¡¤»Ä¤»¤ë¿ô¤Ï¡¤3 ¤Ç³ä¤Ã¤Æ 1 ;¤ë¿ô¤Ç¤¢¤Ã¤Æ¡¤¤·¤«¤âÂоΰÜÆ°¤Ë¤è¤Ã¤ÆÂбþ¤¹¤ë¿ô¤â 3 ¤Ç³ä¤Ã¤Æ 1 ;¤ë¿ô¡¤¤È¤¤¤¦¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£ ¤³¤Î¾ò·ï¤òËþ¤¿¤¹¿ô¤ò¶ñÂÎŪ¤ËÄ´¤Ù¤ë¤È¡¤19¡¤22¡¤43¡¤46¡¤¤À¤±¤Ç¤¹¡£ ¤½¤·¤Æ¡¤¤³¤ì¤é¤Î¤É¤Î¿ô¤Ç¤â£±¤Ä»Ä¤·¤Æ¾¤Î¤¹¤Ù¤Æ¤òĹÊý·Á¤Çʤ¤¦ÇÛÃÖ¤¬¼Â¸½²Äǽ¤Ê¤Î¤Ï¶ñÂÎŪ¤Ë¾¯¤·¤ä¤Ã¤Æ¤ß¤ì¤Ðʬ¤«¤ê¤Þ¤¹¡£ ¤½¤³¤Ç¡¤»Ä¤»¤ë£±¤Ä¤Ï¡¤19¡¤22¡¤43¡¤46¡¤¤È¤Ê¤ê¤Þ¤¹¡£ ¤³¤ÎÌäÂê¤Ç¤Ï¡¤¤½¤ì¤é¤ÎϤòµá¤á¤ë¤Î¤Ç¡¤Åú¤¨¤Ï¡¤19 + 22 + 43 + 46 = 130¡¤¤Ë¤Ê¤ê¤Þ¤¹¡£ (²òË¡2)¡¡»»¿ô¤«¤É¤¦¤«Èù̯¤Ç¤¹¤¬°ì±þ¤Ï»»¿ô¤«¤Ê ¿Þ£±¤Î 8 * 8 ¤Î¥Þ¥¹ÌܤΤ½¤ì¤¾¤ì¤Î¿ô¤«¤é 1 ¤ò°ú¤¤¤Æ¥Þ¥¹Ìܤοô¤ò 0 ¡Á 63 ¤È¤·¡¤ ¤½¤Î¤½¤ì¤¾¤ì¤ËÂФ· (8 ¤Ç³ä¤Ã¤¿¾¦, 8 ¤Ç³ä¤Ã¤¿Í¾¤ê) ¤È¤¤¤¦ÁȤòºî¤ê¤Þ¤¹¡£¤¹¤ë¤È¡¤ (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7) (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (4,0) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (5,0) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (6,0) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (7,0) (7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) ¤Ç¤¹¡£Íפ¹¤ë¤Ë¡¤¿ô³Ø¤Ç¤¤¤¦¤È¤³¤í¤ÎºÂɸ¤Ç¤¹¤Í¡£ ¤³¤ì¤é¤ÎÁȤËÂФ·¤Æ¡¤¿Þ£²¤Î 1 * 3 ¤ÎĹÊý·Á¤Î¥Þ¥¹Ìܤò½Ä¤Ë¤ª¤¤¤Æ¤â²£¤Ë¤ª¤¤¤Æ¤âÁȤκ¸±¦¤½¤ì¤¾¤ì¤ÎÏÂ¤Ï (3 ¤ÎÇÜ¿ô, 3 ¤ÎÇÜ¿ô) ¤Ç¤¹¡£ ¤½¤³¤Ç¡¤Ä¹Êý·Á¤ò²Äǽ¤Ê¸Â¤êÉߤµÍ¤á¤¿¾ì¹ç¤Îʤ¤ï¤ì¤ëÁȤÎϤâ (3 ¤ÎÇÜ¿ô, 3 ¤ÎÇÜ¿ô) ¤Ç¤¹¡£ °ìÊý¤Ç¡¤8 * 8 ¤Î¥Þ¥¹ÌܤÎÃæ¤ÎÁȤκ¸±¦¤Î¤½¤ì¤¾¤ì¤ÎÁíÏÂ¤Ï ((7 * 8)/2 * 8,(7 * 8)/2 * 8) = (224,224) ¤Ç¡¤ (3 ¤Ç³ä¤Ã¤Æ 2 ;¤ë¿ô, 3 ¤Ç³ä¤Ã¤Æ 2 ;¤ë¿ô) ¤Ç¤¹¡£ ¤½¤³¤Ç¡¤»Ä¤»¤ë£±¤Ä¤Ï (3 ¤Ç³ä¤Ã¤Æ 2 ;¤ë¿ô, 3 ¤Ç³ä¤Ã¤Æ 2 ;¤ë¿ô) ¤Ç¤Ê¤±¤ì¤Ð¤Ê¤ê¤Þ¤»¤ó¡£ ¤³¤Î¤è¤¦¤ÊÁȤϡ¤(2,2)¡¤(2,5)¡¤(5,2)¡¤(5,5)¡¤¤À¤±¤Ç¤¹¡£¤³¤ì¤é¤Ï¡¤¸µ¤Î¿ô¤Ç¤Ï¡¤19¡¤22¡¤43¡¤46¡¤¤Ç¤¹¡£ ¤½¤·¤Æ¡¤¤³¤ì¤é¤Î¤É¤Î¿ô¤Ç¤â£±¤Ä»Ä¤·¤Æ¾¤Î¤¹¤Ù¤Æ¤òĹÊý·Á¤Çʤ¤¦ÇÛÃÖ¤¬¼Â¸½²Äǽ¤Ê¤Î¤Ï¶ñÂÎŪ¤Ë¾¯¤·¤ä¤Ã¤Æ¤ß¤ì¤Ðʬ¤«¤ê¤Þ¤¹¡£ ¤½¤³¤Ç¡¤»Ä¤»¤ë£±¤Ä¤Ï¡¤19¡¤22¡¤43¡¤46¡¤¤È¤Ê¤ê¤Þ¤¹¡£ ¤³¤ÎÌäÂê¤Ç¤Ï¡¤¤½¤ì¤é¤ÎϤòµá¤á¤ë¤Î¤Ç¡¤Åú¤¨¤Ï¡¤19 + 22 + 43 + 46 = 130¡¤¤Ë¤Ê¤ê¤Þ¤¹¡£ (²òË¡3)¡¡´°Á´¤Ë¿ô³Ø ¤³¤Î²òË¡¤Ï¡¤°ÊÁ°¤ÎÎàÂê¤Ç ¥Ü¡¼¥Ê¥¹ÌäÂꤵ¤ó ¤Ë¶µ¤¨¤Æ¤â¤é¤Ã¤¿ Analytic Combinatorics ¤Ë´ð¤Å¤¯¤â¤Î¤Ç¤¹¡£ (²òË¡2)¤ÎÁȤòƳÆþ¤·¡¤(i,j) ¤ËÂФ·¤Æ x^i * y^j ¤È¤¤¤¦¼°¤ò¹Í¤¨¡¤¿Þ£±¤Î 8 * 8 ¤Î¥Þ¥¹ÌܤËÂФ·¤Æ¡¤ P(x,y) = x^i * y^j ¤ÎÏ = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)(1 + y + y^2 + y^3 + y^4 + y^5 + y^6 + y^7) ¤È¤¤¤¦Â¿¹à¼°¤òÄêµÁ¤·¤Þ¤¹¡£¤¹¤ë¤È¡¤¿Þ£²¤Î 1 * 3 ¤ÎĹÊý·Á¤Î¥Þ¥¹ÌܤòÃÖ¤¤¤¿¾ì¹ç¤Î¼°¤Ï¡¤ ½Ä¤Ê¤é¤Ð f(x,y) = x^k * y^m * (1 + x + x^2)¡¤²£¤Ê¤é¤Ð g(x,y) = x^k * y^m * (1 + y + y^2)¡¤ ¤È½ñ¤±¤Þ¤¹¡£¤½¤·¤Æ¡¤Ä¹Êý·Á¤Ç 8 * 8 ¤òʤ¤¤£±¥Þ¥¹¤À¤±»Ä¤ë¤È¤¤¤¦¤Î¤Ï¡¤ P(x,y) = ¦²f(x,y) + ¦²g(x,y) + x^i * y^j ¤È½ñ¤±¤ë¤È¤¤¤¦¤³¤È¤Ç¤¹¡£ ¤³¤³¤Ç¡¤¦Ø¤ò 1 ¤Î£³¾èº¬¤Î¤¦¤ÁÊ£ÁÇ¿ô¤Î¤â¤Î¡¤1 + ¦Ø + ¦Ø^2 = 0¡¤¤È¤·¡¤ x = ¦Ø¡¤y = ¦Ø¡¤¤È¤¹¤ë¤È¡¤P(x,y) = ¦Ø^1¡¤f(x,y) = 0¡¤g(x,y) = 0, ¦Ø^(i+j) = ¦Ø^1¡¤i + j ¢á 1 (mod 3)¡¤ x = ¦Ø¡¤y = ¦Ø^2¡¤¤È¤¹¤ë¤È¡¤P(x,y) = ¦Ø^0¡¤f(x,y) = 0¡¤g(x,y) = 0, ¦Ø^(i+2j) = ¦Ø^0¡¤i + 2j ¢á 0 (mod 3)¡¤ ¤È¤Ê¤Ã¤Æ¡¤i ¢á j ¢á 2 (mod 3)¡¤¤Ç¤¹¡£ ¸å¤Ï¡¤(²òË¡2)¤ÈƱ¤¸¤Ç¤¹¡£ ¤Þ¤¡¡¤»»¿ô¤È¤·¤Æ¤Ï(²òË¡1)¤¬°ìÈÖ¼«Á³¤«¤Ê¡£¤¿¤À¡¤ºÂɸ¤Î¿´ÆÀ¤¬¤¢¤ì¤Ð(²òË¡2)¤ÎÊý¤¬¤¤¤¤¤«¤âÃΤì¤Þ¤»¤ó (²òË¡3)¤Ï»ä¤¬ Analytic Combinatorics ¤òÍý²ò¤·¤Æ¤¤¤ë¤«¤Î³Îǧ¤Ç¡¤¤ªÍ·¤Ó¤Ç¤¹¡£¤¢¤¯¤Þ¤Ç¤â¤´»²¹Í¤Ç¤¹¡£ |
¡¡¡¡
3·î11Æü¡Ê¶â¡Ë 15:49:07¡¡¡¡
¡¡¡¡44253 |
uchinyan |
·Ç¼¨ÈĤòÆɤߤޤ·¤¿¡£
Ãí°Õ °Ê²¼¤Îµ½Ò¤Ï¡¤¤½¤â¤½¤â¤Ï»ä¼«¿È¤ÎÊÙ¶¯¤Î¥á¥â¤Ë²á¤®¤Ê¤¤¤Î¤Ç¤¹¤¬¡¤ À޳ѤʤΤǤ´»²¹Í¤Þ¤Ç¤Ë¤È»×¤Ã¤Æ¸ø³«¤¹¤ë¤â¤Î¤Ç¤¹¡£ ¤½¤¦¤¤¤¦¤³¤È¤â¤¢¤Ã¤Æ¡¤²òË¡¤ÎʬÎà¤Ï»»¥Á¥ã¥ì¤Î F.A.Q. ¤Î¡Ö»»¿ô¤ÎÈϰϡפε½Ò¤ò»²¹Í¤Ë¡¤ »ä¸Ä¿Í¤¬ÆÈÃǤÈÊи«¤Ç¼ç´ÑŪ¤Ë¹Ô¤Ã¤Æ¤¤¤ë¤â¤Î¤Ç¤¢¤Ã¤Æ¡¤µÒ´ÑŪ¤Ê¤â¤Î¤Ç¤Ï¤¢¤ê¤Þ¤»¤ó¡£ ¤¢¤¯¤Þ¤Ç¤â¤´»²¹Í¤Ç¤¹¡£°¤·¤«¤é¤º¡£ º£²ó¤Ï¡¤³§¤µ¤ó¡¤£³¤Ç³ä¤Ã¤¿Í¾¤ê¤ËÃíÌܤ¹¤ë¡¤¤È¤¤¤¦²òË¡¤Î¤è¤¦¤Ç¤¹¤Í¡£ ¤Ê¤ë¤Û¤É¡¤Âè947²ó¤Ç¤·¤¿¤«¡£½é¸«¤À¤Ã¤¿¤Î¤Ç¤¢¤Á¤é¤ÎÊý¤¬Æñ¤·¤«¤Ã¤¿µ¤¤¬¤·¤Æ¤¤¤Þ¤¹¡£ ¤¢¤Î¤È¤¤Ï¤¤¤í¤¤¤í¤ÈµÄÏÀ¤·¤Þ¤·¤¿¤Í¡£ |
¡¡¡¡
3·î10Æü¡ÊÌÚ¡Ë 14:34:54¡¡¡¡
¡¡¡¡44255 |
¤Ë¤ã¤â¡¼·¯ |
Â礶¤Ã¤Ñ¤Ç¼«Ê¬¤Ç¤âǼÆÀ¹Ô¤Ã¤Æ¤Ê¤¤ÊýË¡¤Ê¤Î¤Ç¤¹¤¬¡¢³°Â¦¤Î£²Îó¡ß£²¹Ô¡Ê48Ëç¡Ë¤ò£±¡ß£³¤Î¥¿¥¤¥ë¤ÇËä¤á¤Æ¡¢Ãæ¿´¤Î£´¡ß£´¤Î¥¿¥¤¥ë¤Î¤¦¤Á£±Ëç¤ò;¤é¤»¤ëÊýË¡¤ò¤È¤ê¤Þ¤·¤¿¡£Í¾¤ë£±Ëç¤Î¸õÊ䤬¡¢19¡¦22¡¦43¡¦46¤È¤Ê¤Ã¤¿¼¡Âè¤Ç¤¹¡£
ǼÆÀ¤¤¤Ã¤Æ¤Ê¤¤¤Î¤Ç¡¢¤³¤Î·Ç¼¨ÈĤǤβòË¡¤ò¸ʬ¤ËÊÙ¶¯¤µ¤»¤Æ¤¤¤¿¤À¤¡¢·ìÆù²½¤µ¤»¤Æĺ¤¤Þ¤¹¡£ |
¡¡¡¡
3·î11Æü¡Ê¶â¡Ë 0:27:47¡¡¡¡
¡¡¡¡44256 |
¥Ï¥é¥®¥ã¡¼¥Æ¥¤ |
°ìȯ¤Ç¤ÏÆþ¤ì¤¿¤Î¤¬¿®¤¸¤é¤ì¤Ê¤¤¡£
²òË¡¤ò¸«¤Æ¹Í¤¨¤Þ¤¹¡£ |
»³¸ý¡¡¡¡
3·î11Æü¡Ê¶â¡Ë 5:51:07¡¡¡¡
HomePage:À©¸æ¹©³Ø¤Ë¥Á¥ã¥ì¥ó¥¸¡¡¡¡44257 |
fumio |
¤´Ìµº»ÂÁ¤·¤Æ¤¤¤Þ¤¹¡£¸µµ¤¤Ç¤¹¡£¡Ê¾Ð¡Ë
5·î³Ú¤·¤ß¤Ë¤·¤Æ¤¤¤Þ¤¹¡£¤Ç¤Ï¤Ç¤Ï¡£ |
¡¡¡¡
3·î11Æü¡Ê¶â¡Ë 14:04:19¡¡¡¡
¡¡¡¡44258 |
¤ß¤«¤ó |
£±¡ß£²¤Î¥¿¥¤¥ëÉߤµÍ¤á¤Î¾ì¹ç¤Ï¡¢¥Á¥§¥¹ÈפΤ褦¤ËÇò¹õ¸ò¸ß¤ËÅɤêʬ¤±¤ë
¤È¤¤¤¦ÊýË¡¤¬»È¤ï¤ì¤Þ¤¹¤è¤Í¡£º£²ó¤Ï¤½¤ì¤Ë¤Ê¤é¤Ã¤Æ £Á£Â£Ã£Á£Â£Ã£Á£Â £Â£Ã£Á£Â£Ã£Á£Â£Ã £Ã£Á£Â£Ã£Á£Â£Ã£Á £Á£Â£Ã£Á£Â£Ã£Á£Â £Â£Ã£Á£Â£Ã£Á£Â£Ã £Ã£Á£Â£Ã£Á£Â£Ã£Á £Á£Â£Ã£Á£Â£Ã£Á£Â £Â£Ã£Á£Â£Ã£Á£Â£Ã ¤Ã¤Æ´¶¤¸¤Ëµ¹æ¤ò¿¶¤ë¤È¡¢£±¡ß£³¤Î¥¿¥¤¥ë¤ò¤É¤¦ÃÖ¤¤¤Æ¤â£Á£Â£Ã¤¬£±¸Ä¤º¤Ä ´Þ¤Þ¤ì¤Þ¤¹¡£¾å¤Î£¶£´¥Þ¥¹¤Ç¤Ï£Â¤À¤±¤¬£±¸Ä¿¤¤¤Î¤Ç¡¢Í¾¤é¤»¤ë¤³¤È¤Î¤Ç¤¤ë ¥Þ¥¹¤Ï£Â¤¬½ñ¤«¤ì¤Æ¤¤¤ë¥Þ¥¹¤Î¤ß¡£ ½¾¤Ã¤Æ£Â¤¬½ñ¤«¤ì¤Æ¤¤¤ë¥Þ¥¹¤Ï;¤ë¥Þ¥¹¤Ë¤Ê¤ë¤Ï¤º¡¢¤Ã¤Æ¹Í¤¨¤¿¤Î¤À¤±¤ì¤É ¼ÂºÝ¤Ë¤Ï£Â¤Î¥Þ¥¹¤Ç¤â;¤ë¥Þ¥¹¤Ë¤Ê¤é¤Ê¤¤¤³¤È¤â¤¢¤ë¤è¤¦¤Ç¡¦¡¦¡¦¡£ ¡Ö£Á¤È£Ã¤Î¥Þ¥¹¤Ï;¤é¤»¤ë¤³¤È¤¬¤Ç¤¤Ê¤¤¡×¤È¤¤¤¦¾ÚÌÀ¤Ê¤é¤³¤ì¤Ç¤¤¤¤¤Î¤Ç¤·¤ç¤¦¤¬¡¢ ²¿¤¬¤ª¤«¤·¤¤¤ó¤Ç¤·¤ç¤¦¡© |
¡¡¡¡
3·î11Æü¡Ê¶â¡Ë 16:54:58¡¡¡¡
¡¡¡¡44259 |
Ï·»»Ê¼ |
¡¡¡¡µ×¤·¤Ö¤ê¤ËÅê¹Æ¤·¤Þ¤¹
¥Þ¥¹Ìܤ¬£µ¤ÎÀµÊý·Á¤ò¹Í¤¨¤Þ¤¹ ¡¡¡¡£³¡Ý£²¡á£±¡Ê¿¿¤óÃæ¤Î¶õÇò¤Ç¤¹¡Ë ¡¡¡¡£³¡Ü£²¡á£µ¡Ê³°Â¦¤Ç¤¹¡Ë ¡¡¡¡£¸¡Ý£µ¡á£³¡Ê£µ¤ÎÀµÊý·Á¤Î³°Ë٤Ǥ¹¡Ë ¡¡¡¡¡¡¡¡¤³¤ì¤ò¿Þ£²¤Î¥Þ¥¹¤ÇËä¤á¤Þ¤¹ ¥Þ¥¹Ìܤ¬£µ¤ÎÀµÊý·Á¤¬£´¶ù¤ò°ÜÆ°¤·¤Þ¤¹ ¤³¤³¤«¤é£´¸Ä¤Î¶õÇò¤Î¹ç·×¤¬£±£³£°¤È¤Ê¤ê¤Þ¤·¤¿ |
Ê¡²¬¸©¡¡¡¡
3·î12Æü¡ÊÅÚ¡Ë 9:57:57¡¡¡¡
¡¡¡¡44260 |
¤Þ¤ë¥±¥ó |
¤ß¤«¤ó¤µ¤ó¤ÎÊýË¡¡¢¤¤¤¤¤Ç¤¹¤Í¡£
£Â¤Î°ÌÃ֤Ϥ³¤ó¤Ê´¶¤¸¡£ ¢¢¢£¢¢¢¢¢£¢¢¢¢¢£ ¢£¢¢¢¢¢£¢¢¢¢¢£¢¢ ¢¢¢¢¢£¢¢¢¢¢£¢¢¢¢ ¢¢¢£¢¢¢¢¢£¢¢¢¢¢£ ¢£¢¢¢¢¢£¢¢¢¢¢£¢¢ ¢¢¢¢¢£¢¢¢¢¢£¢¢¢¢ ¢¢¢£¢¢¢¢¢£¢¢¢¢¢£ ¢£¢¢¢¢¢£¢¢¢¢¢£¢¢ Î㤨¤Ð¡¢¤³¤ì¤òº¸±¦È¿Å¾¤µ¤»¤ë¤È¡¢ ¢£¢¢¢¢¢£¢¢¢¢¢£¢¢ ¢¢¢£¢¢¢¢¢£¢¢¢¢¢£ ¢¢¢¢¢£¢¢¢¢¢£¢¢¢¢ ¢£¢¢¢¢¢£¢¢¢¢¢£¢¢ ¢¢¢£¢¢¢¢¢£¢¢¢¢¢£ ¢¢¢¢¢£¢¢¢¢¢£¢¢¢¢ ¢£¢¢¢¢¢£¢¢¢¢¢£¢¢ ¢¢¢£¢¢¢¢¢£¢¢¢¢¢£ Åɤêʬ¤±Êý¤òÊѤ¨¤Æ¤â¡¢ÉߤµÍ¤á¤é¤ì¤Ê¤¤¾ì½ê¤¬ÊѤï¤ë¤Ï¤º¤Ï¤¢¤ê¤Þ¤»¤ó¡£ ¤È¤¤¤¦¤³¤È¤Ç¡¢¤³¤Î¤É¤Á¤é¤Î¾ì¹ç¤Ë¤ª¤¤¤Æ¤âB¤¬Íè¤ë¾ì½ê¤¬Åú¤¨¤Ã¤Æ¤¤¤¦¤Î¤Ï¤É¤¦¤Ç¤·¤ç¤¦¡£ |
¡¡¡¡
3·î13Æü¡ÊÆü¡Ë 10:21:38¡¡¡¡
MAIL:take4310@mobile.email.ne.jp ¡¡¡¡44261 |
¥¹¥â¡¼¥¯¥Þ¥ó |
#44259 ¤ß¤«¤ó¤µ¤ó¤Î¿Þ
3¤Î¾ê;¤ÇA=1, B=2, C=3¤ÈƱ¤¸¤Ç¤¹¤Í ^^ ¤³¤Î¿Þ¤ò²óž¤µ¤»¤Æ¤âƱ¤¸Ê¸»ú(¿ô)¤Ç¤¢¤ë¾ì½ê¤¬µá¤á¤ë°ÌÃ֤ˤʤë¤ï¤±¤Ç¤¹¤è¤Í¡£ ¥Ù¥ë¥¯¥«¥Ã¥Ä¥§¤µ¤ó¤ÎÊýË¡¤ÈƱÃͤιͤ¨Êý¤Ç¤¹¤Í¡ù |
¶â¨À§¶õ ^^;v¡¡¡¡
3·î13Æü¡ÊÆü¡Ë 10:42:07¡¡¡¡
¡¡¡¡44262 |
¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§ |
#44262¥¹¥â¡¼¥¯¥Þ¥ó¤µ¤ó
Á°²ó¤ÎÎàÂê¤Ç·Ç¼¨ÈĤˤ¢¤Ã¤¿ÊýË¡¤Ê¤Î¤Ç¡¢»ä¤ÎÊýË¡¤È¤¤¤¦Ìõ¤Ç¤Ï¤Ê¤¤¤Î¤Ç¤¹¤¬¡£ ¤³¤ì¤ÏɬÍ×¾ò·ï¤È½½Ê¬¾ò·ï¤ò¤·¤Ã¤«¤ê¶èÊ̤·¤Æ¤¤¤Ê¤¤¤È̤¦¤È¤³¤í¤Ç¤¹¤Í¡£ |
¡¡¡¡
3·î13Æü¡ÊÆü¡Ë 12:17:26¡¡¡¡
¡¡¡¡44263 |
µ´ |
30ÉäDzò¤±¤Æ¤·¤Þ¤¤¤Þ¤·¤¿¤è¡Ä
¤½¤â¤½¤âÅú¤¨¤¬130¤ÎÇÜ¿ô¤Î»þÅÀ¤Ç¿ô¤Ï¸Â¤é¤ì¤Æ¤¤¤Þ¤¹¤«¤é¤Í¡Ä |
¡¡¡¡
3·î13Æü¡ÊÆü¡Ë 18:01:48¡¡¡¡
¡¡¡¡44264 |
¤ß¤«¤ó |
¡Ê#44261¡Ë¤Þ¤ë¥±¥ó¤µ¤ó
²óž¤µ¤»¤Æ¤âÉߤµÍ¤áÉÔ²Äǽ¤Ê¾ì½ê¤ÏÊѤï¤é¤Ê¤¤¡¢¤«¤¡¡£ ¸À¤ï¤ì¤Æ¤ß¤ì¤Ð³Î¤«¤Ê¤ó¤À¤±¤É¡¢¾ÚÌÀ¤Ç¤¤¿µ¤¤Ë¤Ê¤Ã¤Æ¤¤¤¿¤Î¤Çµ¤¤Å¤¤Þ¤»¤ó¤Ç¤·¤¿¡£ »î¸³¤È°ã¤Ã¤Æ¡Ö¤É¤³¤¬¸í¤Ã¤Æ¤¤¤ë¤«¡×¤Î»ØŦ¤¬¼õ¤±¤é¤ì¤ë¤Î¤Ç¡¢ÊÙ¶¯¤Ë¤Ê¤ê¤Þ¤¹¤Í¡£ ¤¢¤ê¤¬¤È¤¦¤´¤¶¤¤¤Þ¤·¤¿¡£ |
¡¡¡¡
3·î14Æü¡Ê·î¡Ë 1:00:38¡¡¡¡
¡¡¡¡44265 |
??? |
Dim n As Integer, a(21) As Integer
Sub Macro1() Cells(1, 1).Value = 0 For n = 1 To 28 If n <= 4 Or (9 <= n And n <= 12) Or (17 <= n And n <= 20) Or 25 <= n Then a(0) = 0 : Call saiki(1) End If Next n End Sub Sub saiki(ByVal m As Integer) Dim b(64) As Integer, x As Integer, y As Integer, dame As Integer, j As Integer a(m) = 1 '1:²£, 2:½Ä While a(0) = 0 And a(m) <= 2 x = 0 : y = 0 For j = 1 To 64 : b(j) = 0 : Next j b(n) = 1 For j = 1 To m - 1 While b(f(x, y)) x = x + 1 : If x > 7 Then x = 0 : y = y + 1 Wend If a(j) = 1 Then b(f(x, y)) = 1 : b(f(x + 1, y)) = 1 : b(f(x + 2, y)) = 1 x = x + 3 : If x > 7 Then x = 0 : y = y + 1 Else b(f(x, y)) = 1 : b(f(x, y + 1)) = 1 : b(f(x, y + 2)) = 1 x = x + 1 : If x > 7 Then x = 0 : y = y + 1 End If Next j While b(f(x, y)) x = x + 1 : If x > 7 Then x = 0 : y = y + 1 Wend If a(m) = 1 Then If x > 5 Then dame = 1 ElseIf b(f(x + 1, y)) + b(f(x + 2, y)) > 0 Then dame = 1 Else dame = 0 End If Else If y > 5 Then dame = 1 ElseIf b(f(x, y + 1)) + b(f(x, y + 2)) > 0 Then dame = 1 Else dame = 0 End If End If If dame = 0 Then If m < 21 Then Call saiki(m + 1) Else Cells(1, 1).Value = Cells(1, 1).Value + 1 Cells(Cells(1, 1).Value, 2).Value = n For j = 1 To 21 Cells(Cells(1, 1).Value, j + 2).Value = a(j) Next j a(0) = 1 End If End If a(m) = a(m) + 1 Wend End Sub Private Function f(ByVal x As Integer, ByVal y As Integer) As Integer f = y * 8 + x + 1 End Function |
¡¡¡¡
3·î14Æü¡Ê·î¡Ë 14:25:56¡¡¡¡
¡¡¡¡44266 |