triacontahedron lover
9Ëç¤Î¤È¤­¡¢27Ëç¤Î¤È¤­¡¢81Ëç¤Î¤È¤­¤Ç¹Í¤¨¤Æ¤ä¤Ã¤È³Î¿®¤¬»ý¤Æ¤Þ¤·¤¿¡£

¥Þ¥¹Ìܽñ¤¤¤Æ0,1,2,3,4,9,10,12,13,...¤È½ç¤Ë´Ý¤ò¤Ä¤±¤Æ¤¤¤¯¤È¤è¤¦¤ä¤¯µ¬Â§À­¤¬¸«¤¨¤Æ¤­¤Þ¤·¤¿¡£
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 0:25:28¡¡¡¡ ¡¡¡¡42451
¤ª¡¼¤Á¤ã¤ó
¥«¥ó¥È¡¼¥ë½¸¹ç¤Ý¤¤ÏäǤ¹¤Í
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 0:26:39¡¡¡¡ ¡¡¡¡42452
triacontahedron lover
¼«Ê¬¤Ç½ñ¤¤¤Æ¤ª¤­¤Ê¤¬¤é2¤ò¿ô¤¨¤Æ¤¤¤ë¤È¤Ï²¿»ö¤¸¤ã
¥«¥ó¥È¡¼¥ë½¸¹ç¤Ë¤Ä¤¤¤ÆÄ´¤Ù¤Æ¤­¤Þ¤·¤¿¤¬³Î¤«¤Ë¤½¤ì¤Ã¤Ý¤«¤Ã¤¿¤Ç¤¹
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 0:29:21¡¡¡¡ ¡¡¡¡42453
CRYING DOLPHIN
ľ´¶¤Ç¡¢3¿ÊË¡¤Ç2¤ò»È¤ï¤Ê¤¤¿ô¤òÎóµó¤¹¤ì¤Ð¤¤¤¤¤Î¤«¤Ê¡¼¤È»×¤Ã¤¿¤±¤É¡¢¤½¤¦¤Ç¤â¤Ê¤¤¤è¤¦¤Ç¡Ä¡£
Î㤨¤Ð¡¢0¡Á8¤Î¤È¤­¤Ï¡Ö0,1,3,4¡×°Ê³°¤Ë¤â¡Ö0,1,3,8¡×¤Ê¤ó¤ÆÁª¤ÓÊý¤â¤¢¤Ã¤¿¤ê¡£
¤È¤¤¤¦¤³¤È¤Ç¡¢ÌäÂê¤ÎÇطʤ¬¤Þ¤Ã¤¿¤¯¤ï¤«¤é¤Ì¤Þ¤Þ¤Ç¤¹¡£¡£
ï¤â¤¤¤Ê¤¤»Ô³¹ÃÏ¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 0:31:56¡¡¡¡ HomePage:¥Ö¥í¥°¤â¤¢¤ë¡¡¡¡42454
triacontahedron lover
Ï¢Åꤴ¤á¤ó¤Ê¤µ¤¤
¥«¥ó¥È¡¼¥ë½¸¹ç¤ß¤¿¤¤¤Ë¹Í¤¨¤ë¤Ê¤é9Ëç¤Î¤È¤­¡¢81Ëç¤Î¤È¤­¡¢729Ëç¤Î¤È¤­¤ÈÁý¤¨¤Æ¤¤¤¯¤Î¤¬¤½¤ì¤é¤·¤¤¤Ç¤¹¤Í

¡ü¡ü¡û
¡ü¡ü¡û
¡û¡û¡û

¢­

¡ü¡ü¡û ¡ü¡ü¡û ¡û¡û¡û
¡ü¡ü¡û ¡ü¡ü¡û ¡û¡û¡û
¡û¡û¡û ¡û¡û¡û ¡û¡û¡û

¡ü¡ü¡û ¡ü¡ü¡û ¡û¡û¡û
¡ü¡ü¡û ¡ü¡ü¡û ¡û¡û¡û
¡û¡û¡û ¡û¡û¡û ¡û¡û¡û

¡û¡û¡û ¡û¡û¡û ¡û¡û¡û
¡û¡û¡û ¡û¡û¡û ¡û¡û¡û
¡û¡û¡û ¡û¡û¡û ¡û¡û¡û

¤³¤ó¤Ê´¶¤¸¤Ç¤¹¤è¤Í¡£¤¢¤Ã¤Æ¤ë¤Ç¤·¤ç¤¦¤«¡£¡£¡£
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 0:34:29¡¡¡¡ ¡¡¡¡42455
¤·¤é¤¹
10^5°Ê²¼¤ÎÈóÉéÀ°¿ô¤«¤é¡¢²¼µ­¤Î¾ò·ï¤òËþ¤¿¤¹1991¸Ä¤Î¿ô¤¬Áª¤Ù¤ë¤³¤È¤ò¼¨¤»¡£
¾ò·ï¡§¤É¤Î»°¸Ä¤òÁª¤ó¤Ç¤âÅùº¹¿ôÎó¤ò¤Ê¤µ¤Ê¤¤¡£

¤Ã¤Æ¿ô¥ª¥ê¤«¤É¤Ã¤«¤ÎÌäÂ꤬¹ç¤Ã¤¿¤³¤È¤ò»×¤¤½Ð¤·¤Þ¤·¤¿
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 0:34:39¡¡¡¡ ¡¡¡¡42456
¤·¤é¤¹
²¼¤Î¤ä¤Ä¤Ï1983ǯ¤ÎIMO5È֤Ǥ·¤¿
ÌäÂêʸÃæ¤Î¿ôÃͤâ1991¤¸¤ã¤Ê¤¯¤Æ1983¤ß¤¿¤¤¤Ç¤¹(¾¯¤Ê¤¯¤È¤â2048°Ê²¼¤Ê¤é¤¤¤±¤½¤¦)
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 0:48:02¡¡¡¡ ¡¡¡¡42457
¤ª¡¼¤Á¤ã¤ó
»ä¤Ï3¿Ê¿ô¤Ç1¤ò»È¤ï¤Ê¤¤
0,2,6,8,18,20,24,26,¡Ä¡Ä
¤È¤¤¤¦¤Î¤ò¹Í¤¨¤Æ¤Þ¤·¤¿¡£¡Ê¥«¥ó¥È¡¼¥ë½¸¹ç¡Ë
triacontahedron lover¤µ¤ó¤Îµ­Ë¡¤ò¼Ú¤ê¤ë¤È
¡ü¡û¡ü
¡û¡û¡û
¡ü¡û¡ü
¤Ç¤¹¡£
No.42455¤Ï3¿Ê¿ô¤Ç2¤ò»È¤ï¤Ê¤¤¥Ñ¥¿¡¼¥ó¤Ç¤¹¤Í¡£
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 0:48:51¡¡¡¡ ¡¡¡¡42458
Mr.¥À¥ó¥Ç¥£
729¡á3^6(Ëç)¤È¤¤¤¦¤³¤È¤Ç¡¢3¿ÊË¡¤Ë´Ø·¸¤¢¤ë¤Î¤Ç¤Ï¤È¹Í¤¨
0,1,3,4,9,10,12,13,27¡¡¤Þ¤Çµá¤á¤Æ¤ª¤¤¤Æ¤«¤é¡¢¤³¤ì¤é¤ò3¿Ê¿ô¤Ëľ¤¹¤È
0,1¤Ð¤«¤ê¤«¤é¤Ê¤ë¤Î¤Ç
3¿Ê¿ô¤Ç¡¡1000000°Ê²¼¤Î¡¡0,1¤Ð¤«¤ê¤«¤é¤Ê¤ë¤â¤Î¡¡2^6=64¡Ê¸Ä¡Ë¤È¤·¤Þ¤·¤¿¡£

¡Ö3¿Ê¿ô¤Ç1,0¤Ð¤«¤ê¤«¤é¤Ê¤ë°Û¤Ê¤ë£²¿ô¤ò²Ã¤¨¤Æ¡¡¤É¤Î°Ì¤â2¤«0¤Ë¤Ê¤ë¤³¤È¤Ï
¤Ê¤¤¤Î¤Ç¡¢¤½¤ÎÊ¿¶Ñ¤¬¤³¤Î·²¤Ë¸ºß¤¹¤ë¤³¤È¤Ï¤Ê¤¤¡×¤È¤¤¤¦Íýͳ¤Ç¤è¤¤¤Î¤«¤Ê¡©
¤¹¤ë¤È
0¡Á(3^n¡Ý1)¤Þ¤Ç¤ÎÈϰϤǤϡ¡£²^n(¸Ä¡Ë
¡ÊÆñ¤·¤¯¤Æ¡¢Ï¢Â³Àµ²ò¤¬ÅÓÀÚ¤ì¤ë¥Ô¥ó¥Á¤Ç¤·¤¿¡Ë
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 1:44:06¡¡¡¡ ¡¡¡¡42459
J¥Þ¥Þ
¤³¤ó¤Ð¤ó¤Ï

CRYING DOLPHIN¤µ¤ó¤Ë¤È¤Æ¤â¶á¤¤¹Í¤¨Êý¤Ç¤¹
3¿ÊË¡¤Ç0¤È1¤Î¤ß¤Çɽ¤»¤ë0¤«¤é728¤Þ¤Ç¤ÎÀ°¿ô¤Î¿ô¤ò¿ô¤¨¤Þ¤·¤¿¡£
Íý¶þ¤Ï¾å¼ê¤¯ÀâÌÀ¤Ç¤­¤Þ¤»¤ó¤¬(^^;
ºÇÂçËç¿ô¤Ï3^kËç¤Ç¤¢¤ì¤Ð2^kËç¤Ç¤è¤¤¤Î¤«¡Ä
¤Þ¤À¤è¤¯¤ï¤«¤Ã¤Æ¤ª¤ê¤Þ¤»¤ó(^^;

¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 1:00:09¡¡¡¡ ¡¡¡¡42461
¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§
729¤Þ¤Ç¤Ç65Ëç¤Ç¤Ê¤¼¹ç¤ï¤Ê¤¤¤Î¤«¤È»×¤Ã¤Æ¤¤¤¿¤é¡¢¤è¤¯¸«¤¿¤é728¤Þ¤Ç¤Ê¤Î¤Ç64Ëç¤Ç¤·¤¿¡£
Èè¤ì¤¿¤Î¤Ç¹Í¤¨Êý¤¬Àµ¤·¤¤¤«¤Î¸¡¾Ú¤Ï¡¢Æü¤ò²þ¤á¤Æ¡¦¡¦¡¦¡£
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 1:03:13¡¡¡¡ ¡¡¡¡42462
¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§
¤Á¤Ê¤ß¤Ë¡¢¿ô»ú¤Î´Ö³Ö¤ò¹Í¤¨¤ÆÃÏÆ»¤Ëˡ§¤ò¸«¤Ä¤±¤Æ¤ß¤Þ¤·¤¿¡£
1¡¢2¡¢1¡¢5¡¢1¡¢2¡¢1¡¢14¡¢1¡¢2¡¢1¡¢5¡¢¡¦¡¦¡¦¡¦¡¦¡¦
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 1:05:11¡¡¡¡ ¡¡¡¡42463
¥Ï¥é¥®¥ã¡¼¥Æ¥¤
¤ª¤Ï¤è¤¦¤´¤¶¤¤¤Þ¤¹¡£Ç§¾ÚÍê¤ê¤Ç¤·¤¿¡£
»³¸ý¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 6:33:30¡¡¡¡ HomePage:À©¸æ¹©³Ø¤Ë¥Á¥ã¥ì¥ó¥¸¡¡¡¡42464
¤Þ¤ë¥±¥ó
³§¤µ¤ó¤ÈƱ¤¸¤è¤¦¤Ë¡¢¾®¤µ¤¤¿ô»ú¤«¤é¤¿¤á¤·¤Æˡ§¤ò¸«¤Ä¤±¡¢£·£²£¸¤Ë³ÈÄ¥¤·¤Æ£¶£´Ëç¤Ë¤¿¤É¤êÃ夭¤Þ¤·¤¿¡£

³Îǧ¤Î¤¿¤á¡¢¥×¥í¥°¥é¥à¤ò½ñ¤­¡¢¤¤¤í¤¤¤í»î¤·¤¿¤È¤³¤í¡¢¤È¤ó¤Ç¤â¤Ê¤¤¤â¤Î¤ò¸«¤Ä¤±¤Æ¤·¤Þ¤¤¤Þ¤·¤¿¡£

£°¤«¤é½ç¤ËÄ´¤Ù¡¢¥«¡¼¥É·²¤Ë¤¢¤ë¿ô»ú¤È¿·¤·¤¤¿ô»ú¤È¤ÎÊ¿¶Ñ¤Ë¤Ê¤ë¿ô»ú¤¬¥«¡¼¥É·²¤Ë¤Ê¤¤¾ì¹ç¤Ï¤½¤Î¿·¤·¤¤¿ô»ú¤ò¥«¡¼¥É·²¤Ë²Ã¤¨¤Þ¤¹¡£
ñ½ã¤Ë£°¤«¤é½ç¤ËÄ´¤Ù¤ë¤È¡¢
[0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, 81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121, 243, 244, 246, 247, 252, 253, 255, 256, 270, 271, 273, 274, 279, 280, 282, 283, 324, 325, 327, 328, 333, 334, 336, 337, 351, 352, 354, 355, 360, 361, 363, 364]
¤Î£¶£´Ëç¤Î¥«¡¼¥É·²¤¬¤Ç¤­¤Þ¤¹¡£

¤·¤«¤·¡¢¤·¤«¤·¤Ç¤¹¡£¤³¤ÎÃæ¤Î¤¿¤È¤¨¤Ð120¤ò¥¹¥­¥Ã¥×¤µ¤»¤Æ¤ß¤¿¤È¤³¤í¡¢
[0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, 81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 121, 201, 228, 237, 240, 244, 245, 247, 256, 258, 259, 261, 270, 280, 283, 292, 297, 298, 306, 327, 330, 331, 334, 343, 346, 360, 496, 497, 525, 534, 588, 589, 597, 613, 616, 666, 670, 671, 675, 678, 687, 705, 706, 713, 715, 718, 728]
¤È¡¢£·£·Ëç¤Î¥«¡¼¥É·²¤¬¤Ç¤­¤Æ¤·¤Þ¤¤¤Þ¤·¤¿¡£

¤È¤¤¤¦¤³¤È¤Ç¡¢£¶£´¤ÏºÇ¿¤Ç¤Ï¤Ê¤µ¤½¤¦¡¢¡¢¡¢

¤¸¤ã¡¢ºÇ¿¤Ï¤¤¤¯¤Ä¡©
¤Ê¤¤¤·¤ç¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 12:40:04¡¡¡¡ HomePage:¤Þ¤ë¥±¥ó¤ÎÉô²°¡¡¡¡42465
¥æ¡¼¥È¥Ë¥¦¥à
ÈëÌ©¤Î¥Ú¡¼¥¸¤¬¸½¤ì¤Þ¤·¤¿¡ª¡ª
¤³¤Î¤è¤¦¤Ê¥â¥Î¤¬¤¢¤Ã¤¿¤Î¤Ç¤¹¤Í¡£¡£¡£
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 11:52:48¡¡¡¡ ¡¡¡¡42466
¥æ¡¼¥È¥Ë¥¦¥à
ÈëÌ©¤Î¥Ú¡¼¥¸¤¬¸½¤ì¤Þ¤·¤¿¡ª¡ª
¤³¤Î¤è¤¦¤Ê¥â¥Î¤¬¤¢¤Ã¤¿¤Î¤Ç¤¹¤Í¡£¡£¡£
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 11:58:49¡¡¡¡ ¡¡¡¡42467
µÈÀî¥Þ¥µ¥ë
½ÐÀ褫¤é¤Ç¤¹¡£

¼Â¤Ï¤³¤ÎÌäÂê¡¢ºÇÂçÀ­¤Ë¤Ä¤¤¤Æ¤Ï¾ÚÌÀ¤Ç¤­¤º¡¢3¿ÊË¡¤òÍѤ¤¤Æ64¸Ä¤Î¾ì¹ç¤Ëºî¤ì¤ë¤³¤È¤Î¤ß¤Î»×¹Í¤Ç¡Ö¤³¤ì¤¬ºÇÂç¤À¤í¤¦¡×¤È½ÐÂꤷ¤Æ¤·¤Þ¤¤¤Þ¤·¤¿¡£¤¹¤ß¤Þ¤»¤ó¡Ä¡£

¸µ¥Í¥¿¤Ï¡¢½©»³¿Î¤µ¤ó¤Î»²¹Í½ñ¤Ç¡¢3¿ÊË¡¤Ë¤è¤ë²òË¡¤â¤½¤³¤Ë¤¢¤ê¤Þ¤·¤¿¡£(¤¬¡¢ºÇÂçÀ­¤Ë¤Ï¸ÀµÚ¤·¤Æ¤¤¤Þ¤»¤ó¡£)

º£¸å¤ÎÂбþ¤Ë¤Ä¤¤¤Æ¤Ï¡¢µ¢Âð(µ¢¼Ò)¸å¤Ë¹Í¤¨¤Þ¤¹¡£¤´ÌÂÏǤò¤ª¤«¤±¤·¡¢¿½¤·Ìõ¤¢¤ê¤Þ¤»¤ó¡£
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 13:02:53¡¡¡¡ ¡¡¡¡42468
¤¢¤á¤¤
Æñ¤·¤«¤Ã¤¿(¤­¤Á¤ó¤È²ò¤±¤Æ¤¤¤Ê¤¤¤Î¤Ç¡ÖÆñ¤·¤¤¡×¤¬Àµ¤·¤¤)¤Ç¤¹¡£
º¤¤Ã¤¿¤È¤­¤Ï²¿¤Ç¤â¥Ò¥ó¥È¤Ë¤¹¤ë¤¾¡¦¡¦¡¦¤È¤¤¤¦¤³¤È¤Ç
£·£²£¹¡á£³¡°£¶¡¦¡¦¡¦¡¦²¿¾è¤òÍøÍѤ¹¤ë¡©²ø¤·¤¤
(º£²ó¤ÏÆñ¤·¤¤¤Î¤ÇºÇÂç¸Â¤Î¥Ò¥ó¥È¤òÍ¿¤¨¤Æ¤ä¤í¤¦¤È¤¤¤¦¡©)¥Þ¥µ¥ë¤µ¤ó¤ÎÎã¡¢£°¡¤£±¡¤£´¡¤£µ¡¤£¹¡¦¡¦¡¦¡¦£¹¤¬¥Ý¥Ä¥ó¤ÈÆþ¤ë¢ª£³¡°£¶¢ª£¹¡°£³¡¢£¹¤Ë´Ø¤ï¤ëÌäÂê¡©¡¡¡¡¤È¤¤¤¦¤³¤È¤Ç
£¹¤Ä¤º¤Ä¤Ë¿ô»ú¤ò¶èÀڤäÆʤ٤ë¤ÈºÇ½é¤Î£¹¸Ä¤¬£°¡¤£±¡¤£´¡¤£µ¡¤¼¡¤Î9¸Ä¤¬£¹¡¤£±£°¡¤£±£²¡¤£±£³¡¢¼¡¤Î£¹¸Ä¤ÏÁ´ÌÇ¡¦¡¦¡¦¤È¥°¥ë¡¼¥×¤ËÆþ¤ì¤ë¤Î¤¬²Äǽ¤Ê¿ô¤òÆþ¤ì¤Æ¤¤¤­¡¢²¿¤«Ë¡Â§¤Ï¤Ê¤¤¤«¤ÈÄ´¤Ù¤Æ¤ß¤Þ¤·¤¿¡£
¤¹¤ë¤È(¤³¤³¤«¤é¤¬¤Ê¤¼¤À¤«¤ï¤«¤ê¤Þ¤»¤ó¤¬)ºÇ½é¤Î£¹¸Ä¤Î¡û¡û¡ß¡û¡û¡ß¡ß¡ß¡ß¤Î¥Ñ¥¿¡¼¥ó¤¬¡¢£¹¸Ä¤ò¤Ò¤È¥°¥ë¡¼¥×¤Ë¤·¤¿¤È¤­¤ËÄɲäǤ­¤ë¿ô¤¬¤¢¤ë¡û¡¢¤Ê¤¤¡ß¤Î¥Ñ¥¿¡¼¥ó¤Ë¤âƧ½±¤µ¤ì¤Æ¤¤¤ë¡£¤³¤ì¤Ï¤­¤Ã¤È¤³¤Î£¹¸Ä¤Ò¤È¥°¥ë¡¼¥×¤ò£¹¸Ä¤Þ¤È¤á¤¿¤â¤Î¤Ë¤âƧ½±¤µ¤ì¤Æ¤¤¤ë¤À¤í¤¦¡¦¡¦¤È¤¤¤¦¤³¤È¤Ç¾ò·ï¤Ë¹ç¤¦¿ô¤Ï¡¢ºÇ½é¤Î£¹¸Ä¤Ï4¸Ä¤¬£Ï£Ë¡¢£¹¸Ä¤ò£±¸Ä¤È¤·¤¿¾®¥°¥ë¡¼¥×£¹¸Ä¤Ë£´¸Ä¤¬£Ï£Ë¡¢¾®¥°¥ë¡¼¥×£¹¸Ä¤ò£±¸Ä¤È¤·¤¿Â祰¥ë¡¼¥×¤¬£¹¸Ä¤Ë£´¸Ä£Ï£Ë¡£¤È¤¤¤¦¤³¤È¤Ç£´¡ß£´¡ß£´¡á£¶£´¤È¤Ê¤ê¤Þ¤·¤¿¡£
¤³¤³¤ËÆþ¤ì¤¿¤Î¤Ï¶öÁ³¡©ÀâÌÀ¤Ç¤­¤ë¡©¤ß¤Ê¤µ¤ó¤Î¤ò¤ß¤Æ¡¢ÊÙ¶¯¤·¤Þ¤¹¡£
¡Ê¤½¤ì¤Ë¤·¤Æ¤âº£²ó¡¢º£Ç¯¤ÎϢ³¥¢¥¦¥È¤Î´íµ¡¤Ç¥Û¥Ã¤È¤·¤Þ¤·¤¿¡¢¡Ë
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 13:31:31¡¡¡¡ ¡¡¡¡42469
¤¢¤á¤¤
#42465¥Þ¥ë¤±¤ó¤µ¤ó¡¢#42468¥Þ¥µ¥ë¤µ¤ó¤Îµ­»ö¤ò¸«¤Ê¤¤¤Ç¡¢½ñ¤­¹þ¤ß¤ò¤·¤Æ¤·¤Þ¤¤¤Þ¤·¤¿¡£
¥Þ¥µ¥ë¤µ¤ó¡¢¥Ñ¥Ö¥í¥Õ¤Î¸¤¤è¤í¤·¤¯¥Ñ¥½¥³¥ó¤ÎÁ°¤ËΩ¤Ä¿È¤È¤·¤Æ¤ÏËè²óÌäÂê¤ò½Ð¤·¤Æ²¼¤µ¤ê¡¢´¶¼Õ°Ê³°¤Î¸ÀÍդϤ¢¤ê¤Þ¤»¤ó¡£º£²ó¤â¤­¤Ã¤È¤ß¤Ê¤µ¤ó¤¬¤¤¤í¤¤¤í¸¡Æ¤¤·¤Æ²¼¤µ¤ë¤Î¤Ç¡¢¥«¥ó¥È¡¼¥ë½¸¹ç¡©²¿¤½¤ì¡©¤È(˵´Ñ¤·¤«¤Ç¤­¤Þ¤»¤ó¤¬)³Ú¤·¤Þ¤»¤Æ¤¤¤¿¤À¤­¤Þ¤¹¡£
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 13:48:12¡¡¡¡ ¡¡¡¡42470
¤Þ¤ë¥±¥ó
¤ª¤½¤é¤¯¤Ç¤¹¤¬¡¢£°¤«¤é£·£²£¸¤Ç¤Ê¤¯¡¢£°¤«¤é£³£¶£´¤Ë¤¹¤ì¤Ð£¶£´Ëç¤Ç¤è¤«¤Ã¤¿¤ó¤À¤í¤¦¤Ê¡¢¡¢¡¢¤È»×¤Ã¤Æ¤¤¤Þ¤¹¡£
£·£²£¸¤À¤È¸åȾ¤¬»È¤ï¤Ê¤¹¤®¤Ç¤¹¤è¤Í¡£¤Ê¤Î¤Ç¡¢¤Á¤ç¤Ã¤È¤º¤é¤·¤¿¤ê¤¹¤ë¤È¡¢¤â¤¦¾¯¤·¥«¡¼¥É¤ÎËç¿ô¤¬Áý¤¨¤ë¤ó¤Ç¤·¤ç¤¦¤Í¡£

¡Ê¸½ºß¡¢¥×¥í¥°¥é¥à²ó¤·¤Æ¡¢£·£¸Ëç¤ÎÁȤ߹ç¤ï¤»¤òȯ¸«¡£¤Þ¤À¤¢¤ë¤«¤Ê¡©¡Ë
¤Ê¤¤¤·¤ç¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 13:58:02¡¡¡¡ MAIL:take4310@mobile.email.ne.jp HomePage:¤Þ¤ë¥±¥ó¤ÎÉô²°¡¡¡¡42471
uchinyan
¤Ï¤¤¡¤¤³¤ó¤Ë¤Á¤Ï¡£¤µ¤Æ¡¤º£²ó¤ÎÌäÂê¤Ï¡¥¡¥¡¥
¤¦¡¼¤à¡¤¤è¤¯Ê¬¤«¤é¤º¡¤¾¯¤·¤Ï¤Þ¤Ã¤Æ¤·¤Þ¤¤¤Þ¤·¤¿¡£
729 = 3^6 ¤Ê¤Î¤Ç²¿¤«¤¢¤ê¤½¤¦¤À¤Ê¡¤¤È»×¤Ã¤¿¤â¤Î¤Î¡¤¤Þ¤º¤Ï¶ñÂÎŪ¤ËÄ´¤Ù¤Æ¤ß¤ë¤«¡¤¤È»×¤Ã¤¿¤Î¤¬µÑ¤Ã¤Æ¤è¤¯¤Ê¤«¤Ã¤¿¤«¤â¡£
ºÇÂ礫¤É¤¦¤«¤â¤è¤¯Ê¬¤«¤é¤Ê¤¤¤·¡¤²òË¡¤È¤¤¤¦¤è¤ê¤â¡¤»×¹Í¤Îή¤ì¡¤¤È¤¤¤¦´¶¤¸¤Ç¤¹¤¬¡¤°ì±þ¡¤¤³¤ó¤Ê´¶¤¸¡£

¤Þ¤º¡¤ºÇ½é¤«¤é¤¤¤¤²Ã¸º¤Ç¤¹¤¬¡¤0 ¤ÏÆþ¤ê¤½¤¦¤À¤Ê¡¤¤È¤¤¤¦¤ï¤±¤Ç¡¤0 ¤«¤é»Ï¤á¤Æ¡¤0, 1, 3¡¤¤Ç 3 ¸Ä¡¤¤òÆÀ¤Þ¤¹¡£
¤³¤³¤Ç¡¤°ìÈֺǸå¤Î 3 ¤ò¤¹¤Ù¤Æ¤Ë­¤·¤¿¤â¤Î¡¤3, 4, 6¡¤¤Ï¤½¤ì¤é¤Î´Ö¤Ç¤Ï¾ò·ï¤òËþ¤¿¤¹ºÇÂç¤Ê¤Î¤Ç¡¤
¤³¤ì¤È¡¤0, 1, 3¡¤¤È¤Î´Ö¤Ç¾ò·ï¤òËþ¤¿¤¹¤è¤¦¤Ë¤¹¤ì¤Ð¤è¤¯¡¤¤³¤ì¤Ï¡¤0, 1, 3, 4¡¤¤Ç 4 ¸Ä¡£
¼¡¤Ë¡¤Æ±Íͤˤ¹¤Ù¤Æ¤Ë 4 ¤ò­¤¹¤È¡¤4, 5, 7, 8¡¤¤Ç¤¹¤¬¡¤¤³¤ì¤È¡¤0, 1, 3, 4¡¤¤Ï¤¦¤Þ¤¯¤¤¤­¤Þ¤»¤ó¡£
»ÅÊý¤¬¤Ê¤¤¤Î¤Ç¡¤8 + 1 = 9 ¤òÄɲä·¤¿¡¤0, 1, 3, 4, 9¡¤¤Î 5 ¸Ä¡¤¤ò¹Í¤¨¤ë¤È¤¦¤Þ¤¯¤¤¤­¤Þ¤¹¡£¤³¤ì¤¬Îã¤Ç¤¹¤Í¡£
¤½¤³¤Ç¡¤0, 1, 3, 4, 9¡¤¤ò´ð¤Ë°ìÈֺǸå¤Î 9 ¤ò¤¹¤Ù¤Æ¤Ë­¤·¤¿¤â¤Î¡¤9, 10, 12, 13, 18¡¤¤ò¹Í¤¨¡¤
¤³¤ì¤È¡¤0, 1, 3, 4, 9¡¤¤È¤Î´Ö¤Ç¾ò·ï¤òËþ¤¿¤¹¤è¤¦¤Ë¤¹¤ì¤Ð¤è¤¯¡¤¤³¤ì¤Ï¡¤0, 1, 3, 4, 9, 10, 12, 13¡¤¤Ç 8 ¸Ä¡£
¼¡¤Ï¤¹¤Ù¤Æ¤Ë 13 ¤ò­¤·¤Þ¤¹¤¬¡¤¤³¤ì¤Ï¤ä¤Ã¤Æ¤ß¤ë¤È¤¦¤Þ¤¯¤¤¤«¤º¡¤13 + 13 = 26 ¤Î¼¡¤Î 27 ¤òÄɲ䷤ơ¤
0, 1, 3, 4, 9, 10, 12, 13, 27 ¤Ç 9 ¸Ä¡¤¤òÆÀ¤Þ¤¹¡£
¤³¤³¤Þ¤Ç¤ä¤ì¤Ðµ¬Â§À­¤â¸«¤¨¤Æ¤­¤Þ¤¹¤¬¡¤Ç°¤Î¤¿¤á¤Ë¤â¤¦°ì²ó¤ä¤ë¤È¡¤
0, 1, 3, 4, 9, 10, 12, 13, 27 ¤È 27, 28, 30, 31, 36, 37, 39, 40, 54 ¤Ç¡¤
0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40¡¤¤Î 16 ¸Ä¡£
¼¡¤Î¤¹¤Ù¤Æ¤Ë 40 ¤ò­¤¹¤Î¤È¤³¤ì¤È¤Ï¤¦¤Þ¤¯¤¤¤«¤º¡¤40 + 40 = 80 ¤Î¼¡¤Î 81 ¤òÄɲ䷤ơ¤
0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, 81¡¤¤Î 17 ¸Ä¡£
·ë¶É¡¤
0 ¡Á (3^n - 1)/2 ¤Ï 2^n ¸Ä¡¤0 ¡Á 3^n - 1 ¤â 2^n ¸Ä¡¤0 ¡Á 3^n ¤Ï 3^n ¤Ç½ª¤ï¤ë·Á¤Ç 2^n + 1 ¸Ä¡¤
¾ÚÌÀ¤Ï°ì±þ¤Ï¿ô³ØŪµ¢Ç¼Ë¡¤Ç¤Ç¤­¤ë¤Ç¤·¤ç¤¦¡£
¤¿¤À¤·¡¤¤¢¤¯¤Þ¤Ç¤â¡¤¥«¡¼¥É·²¤Ë 0 ¤ò´Þ¤á¤ë¤Ê¤é¤Ð¡¤¤Ç¤¹¤·¡¤
ºÇÂçÀ­¤â¾åµ­¤Î¹½À®Ë¡¤ÇÌÀ¤é¤«¤«¡¤¤È¤¤¤ï¤ì¤ë¤È¡¤¤Á¤ç¤Ã¤È¼«¿®¤Ï¤¢¤ê¤Þ¤»¤ó¡£

¤³¤ÎÌäÂê¤Ç¤Ï¡¤0 ¡Á 728 = 729 - 1 = 3^6 - 1 ¤Î¥«¡¼¥É¤Ê¤Î¤Ç 2^6 = 64 Ë硤¤Ë¤Ê¤ê¤Þ¤¹¡£

¤³¤³¤Þ¤Ç¹Í¤¨¤Æ¡¤¤É¤¦¤â 3 ¿ÊË¡¤¬Íí¤ó¤Ç¤¤¤½¤¦¤À¤Ê¡¤¤Èµ¤ÉÕ¤­¤Þ¤·¤¿¡£
¤³¤¦¤¤¤¦¤³¤È¤Ê¤Î¤«¤Ê¤¡¡£¾¯¤Ê¤¯¤È¤â¾åµ­¤Î¹Í¤¨Êý¤ÎÇطʤˤϤʤ뤫¤Ê¡£

°ìÈ̤ˡ¤¿ô¤ò 3 ¿ÊË¡¤Çɽ¤¹¤È 0, 1, 2 ¤Çɽ¤µ¤ì¤Þ¤¹¤¬¡¤
0 ¡Á 3^n - 1 ¤Ç¤Ï 0¡¤1¡¤2 ¤Î¸½¤ìÊý¤ÏÅù¤·¤¯¡¤
Î㤨¤Ð 0 ¤È 1 ¤À¤±¤Çɽ¤»¤ë°Û¤Ê¤ë¿ô¤Î£²¤Ä¤ÎÏÂ¤Ï 0 ¤È 2 ¤À¤±¤Ë¤Ê¤ë¤³¤È¤Ï¤Ê¤¯¡¤
¤·¤¿¤¬¤Ã¤Æ¤½¤ì¤ò 2 ¤Ç³ä¤Ã¤¿Ê¿¶Ñ¤Ï0 ¤È 1 ¤À¤±¤Çɽ¤»¤Ê¤¤¡¤¤È»×¤¤¤Þ¤¹¡£
¤½¤³¤Ç¡¤Â¿Ê¬¡¤¤³¤Î¿ʬ¤Ï¤«¤Ê¤ê½Å¤¤Â¿Ê¬¡¤0 ¤È 1 ¤À¤±¤Ç¤Ç¤­¤ë¿ô¤ò½¸¤á¤ì¤ÐÂê°Õ¤òËþ¤¿¤¹¤Î¤Ç¤·¤ç¤¦¡£
¤³¤ì¤¬Àµ¤·¤±¤ì¤Ð¡¤0 ¡Á 3^n - 1 ¤Ç 0 ¤È 1 ¤À¤±¤Çɽ¤»¤ë¿ô¤Î¸Ä¿ô¤Ï 2^n ¸Ä¤Ê¤Î¤Ç¡¤
Âê°Õ¤òËþ¤¿¤¹¥«¡¼¥É·²¤ÎËç¿ô¤â 2^n Ëç¤Ë¤Ê¤ê¤Þ¤¹¡£

¸å¤Ï¡¤·Ç¼¨ÈĤòÆɤó¤ÇÊÙ¶¯¤·¤Þ¤¹¡£
¥Í¥³¤Î½»¤à²È¡¡¡¡ 10·î3Æü¡Ê¶â¡Ë 18:00:24¡¡¡¡ ¡¡¡¡42472
¤ª¡¼¤Á¤ã¤ó
¤Þ¤ë¥±¥ó¤µ¤ó¤Ë¿¨È¯¤µ¤ì¤Æ¡¢0,728,1,727,2,726,¡Ä¡Ä¤È¤¤¤¦½ç½ø¤Ç¥Á¥§¥Ã¥¯¤·¤Æ¤¤¤¯¥×¥í¥°¥é¥à¤Ç
0 1 3 4 9 10 12 13 27 28 30 31 36 37 39 40 81 82 84 85 90 91 93 94 108 109 111 112 117 118 120 121 243 244 246 247 252 253 255 256 270 271 273 274 279 280 282 283 607 608 610 611 616 617 619 620 634 635 637 638 643 644 646 647 688 689 691 692 697 698 700 701 715 716 718 719 724 725 727 728
¤È¤¤¤¦80¸Ä¤ÎÁȤ߹ç¤ï¤»¤Ï¸«¤Ä¤±¤Þ¤·¤¿¡£

3¿Ê¿ô¤Çɽ¤¹¤È
0[01][01][01][01][01] ¤Î 32¸Ä
10[01][01][01][01] ¤Î 16¸Ä
2[12][12][12][12][12] ¤Î 32¸Ä
¤Î·×80¸Ä¤Ë¤Ê¤ê¤Þ¤¹¡£
ºÇÂçÀ­¤Ï¤Þ¤À¤ï¤«¤ê¤Þ¤»¤ó¡£¤â¤Ã¤È¾¯¤Ê¤¤·å¿ô¤ÇʬÀϤ¹¤ë¤È²¿¤«¸«¤¨¤½¤¦¤Ç¤¹¤¬¡Ä¡Ä
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 14:27:01¡¡¡¡ ¡¡¡¡42473
¥¹¥â¡¼¥¯¥Þ¥ó
¤ä¤Ã¤È¤³¤µ¤¡¡Á^^; (ÄûÀµ¤·¤Þ¤·¤¿¡ÄOrz)
729=3^6
¤¸¤Ã¤µ¤¤¤Ï¡¢728¤Þ¤Ç¤Ê¤Î¤Ç¡Ä
Å·Çé¤Ç¹Í¤¨¤ë¤È...
0,3^0,3^1,3^2,3^3,3^4,3^5 ¤ÎʬƼ¤ÎÁȤ߹ç¤ï¤»¤ÇÄà¤ê¹ç¤ï¤Ê¤¤=Ê¿¶ÑÃͤϤʤ¤...
0¤ò­¤·¤Æ¤âÊѤï¤é¤Ê¤¤¤Î¤Ç¡¢3^0¡Á3^5¤Þ¤Ç¤Î6¸Ä¤ÎʬƼ¤ÎÊ£¿ô¸Ä¤ÎϤÀ¤±¤¢¤ë¡£6C1+6C2+6C3+6C4+6C5+6C6=2^6-1
¤³¤ì¤Ë¡¢0¤ò²Ã¤¨¤ë¤³¤È¤¬¤Ç¤­¤ë¤Î¤Ç¡Ä2^6=64 ¢ö

#42465 ¤ò¤ß¤ë¤È¤Ê¤ó¤È!!! 64¤¬ºÇÂ礸¤ã¤Ê¤¤¤ó¤Ç¤¹¤Í¤§ ^^;¡Ä
¶â¨À§¶õ ^^;v¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 15:03:18¡¡¡¡ ¡¡¡¡42474
triacontahedron lover
¸À¤ï¤ì¤Æ¤ß¤ÆºÆ¸¡¾Ú¡£³ç¸Ì¤ËÆþ¤Ã¤Æ¤¤¤ë¤Î¤ÏÂоηÁ¤Ç¤¹¡£

3Ëç¤Î¤È¤­
0,2¡¢0,1(1,2)¤ÇºÇÂç¤Ï2Ëç¡£

9Ëç¤Î¤È¤­
0,2,6,8¡¢0,2,3,5(3,5,6,8)¡¢0,1,3,4(4,5,7,8)¡¢1,2,4,5(3,4,6,7)¡¢0,2,5,7(1,3,6,8)
¤Ç4Ëç¤À¤È»×¤¤¤­¤ä¡£

0,1,3,7,8
¡ü¡ü¡û¡¡¡ü¡û¡û¡¡¡û¡ü¡ü
(0,1,5,7,8)
¡ü¡ü¡û¡¡¡û¡û¡ü¡¡¡û¡ü¡ü
¤Î5Ë礬ºÇÂç¤À¤Èµ¤ÉÕ¤¤¤Æ¤·¤Þ¤¤¤Þ¤·¤¿¡£¤Á¤ç¤Ã¤È¹Í¤¨¤Æ¤­¤Þ¤¹¡£

³Î¤«¤Ë¸åȾ¤ò¤¦¤Þ¤¯»È¤Ã¤Æ¤ä¤ë¤ÈÎɤ¤´¶¤¸¤Ë¤Ê¤ê¤½¤¦¤Ç¤¹¡£¹Í¤¨¤Æ¤­¤Þ¤¹¡£
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 14:48:36¡¡¡¡ ¡¡¡¡42476
uchinyan
·Ç¼¨ÈĤòÆɤߤޤ·¤¿¡£
¤¦¡Á¤à¡¤¤ä¤Ï¤ê¤«¤Ê¤ê¤ÎÆñÌä¤Î¤è¤¦¤Ç¤¹¤Í¡£

¥¢¥¤¥Ç¥£¥¢¤È¤·¤Æ¤Ï¡¤¥«¥ó¥È¡¼¥ë½¸¹ç¡¤3 ¿ÊË¡¡¤¤Ê¤É¤¬¤¢¤ë¤è¤¦¤Ç¤¹¤¬¡¤
¤¤¤º¤ì¤âºÇÂçÀ­¤ÎµÄÏÀ¤Ï¤Ê¤¯¡¤¥×¥í¥°¥é¥àÍê¤ê¤ÎÌÏÍͤǡ¤
ºÇÂç¤Ï¡¤64 Ëç¤Ç¤Ï¤Ê¤¯¡¤º£¤Î¤È¤³¤í¤Ï¡¤#42481¤Î 82 Ë硤¤ÎÌÏÍÍ¡£

¤È¤³¤í¤Ç¡¤¥«¥ó¥È¡¼¥ë½¸¹ç¤Ã¤Æ²¿¡© ÊÙ¶¯¤·¤Þ¤¹ (^^;
¥Í¥³¤Î½»¤à²È¡¡¡¡ 10·î3Æü¡Ê¶â¡Ë 13:35:47¡¡¡¡ ¡¡¡¡42477
¥Ù¥ë¥¯¡¦¥«¥Ã¥Ä¥§
»ä¤â¿ô»ú¤Î´Ö³Ö¤ÈÂоÈÀ­¤¬½Ð¤Æ¤¯¤ë¤³¤È¤«¤é¡¢64¤¬²Äǽ¡¢¤½¤Î¤ä¤êÊý¤À¤È65¤Ë¤Ï¤¢¤È1­¤ê¤Ê¤¤¤È¤³¤í¤Þ¤Ç¤Ï³Îǧ¤Ç¤­¤Þ¤·¤¿¤¬¡¢ºÇÂç¤Ë¤Ä¤¤¤Æ¤Ï¸¡¾Ú¤Ç¤­¤Æ¤¤¤Þ¤»¤ó¡£
¥×¥í¥°¥é¥à¤Ë¤è¤ëÁíÅö¤ê°Ê³°¤Ç²ò¤¯ÊýË¡¤Ï¤¢¤ë¤Î¤Ç¤·¤ç¤¦¤«¡£
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 15:54:24¡¡¡¡ ¡¡¡¡42478
triacontahedron lover
¼Â¸³Ãæ¡£
9Ëç¤Î»þ¤Î4Ëç¥Ñ¥¿¡¼¥ó0,4,5,7(1,3,4,8)¤â¤¢¤Ã¤¿¡£

27Ëç¤Î»þ¤ÎºÇÂç¿ô¤Ï12¤Ã¤Ý¤¤¤Î¤Ç¤¹¤¬¡¢9Ëç¤Î»þ¤¬ºÇÂçÃÍ5¸Ä¤À¤Ã¤¿¤³¤È¹Í¤¨¤ë¤È13¤Ë¤Ê¤ëÁȤ߹ç¤ï¤»¤â¤¢¤ê¤½¤¦¡£
¤È¤ê¤¢¤¨¤º9Ëç¤Î»þ¤Î4Ëç¥Ñ¥¿¡¼¥ó¤ÈºÇÂç¥Ñ¥¿¡¼¥ó¤òÁȤ߹ç¤ï¤»¤Æ12°Ê¾å¤Ë¤¹¤ëÁȤ߹ç¤ï¤»¤ò¹Í¤¨¤ë¤³¤È¤Ë¤¹¤ë¡£

´¶³ÐŪ¤Ë¤ÏÅÓÃæ¤Þ¤Ç¤Ïº¸±¦ÂоΤǿ¿¤óÃæ¤é¤Ø¤ó¤Ç¤¦¤Þ¤¯¤«¤ï¤·¤Æ¤¤¤¯¤È¤¤¤¤¤è¤¦¤Êµ¤¤¬¤¹¤ë¡£ÇùÁ³¤È¤·¤Æ¤Þ¤¹¤¬¡£
¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 15:57:34¡¡¡¡ ¡¡¡¡42479
¤Þ¤ë¥±¥ó
#42479
£²£·Ëç¤È¤¤¤¦¤³¤È¤Ï¡¢£°¤«¤é£²£¶¤Ç¤¹¤è¤Í¡£
£²£·ËçÄøÅÙ¤À¤È¡¢ÁíÅö¤¿¤ê¤ÇÄ´¤Ù¤Æ¤â£¶É䯤餤¤ÇÅú¤¨¤¬½Ð¤Þ¤¹¡£¡Ê´Ä¶­¤Ë¤â¤è¤ê¤Þ¤¹¤¬¡¢¡¢¡¢¡Ë
°Ê²¼¡¢ºÇÂ磱£±Ëç¤Î£±£²¥Ñ¥¿¡¼¥ó¡£

[0, 1, 5, 6, 8, 14, 18, 19, 21, 25, 26]
[0, 1, 5, 7, 8, 12, 18, 20, 21, 25, 26]
[0, 1, 5, 7, 11, 16, 18, 19, 23, 24, 26]
[0, 2, 3, 7, 8, 10, 15, 19, 21, 25, 26]
[0, 2, 3, 5, 11, 15, 16, 18, 23, 24, 26]
[0, 2, 3, 8, 10, 11, 15, 21, 23, 24, 26]
[0, 2, 3, 7, 8, 10, 15, 19, 21, 24, 26]
[0, 2, 5, 7, 11, 16, 18, 19, 23, 24, 26]
[0, 1, 4, 6, 10, 15, 17, 18, 22, 23, 25]
[0, 2, 3, 7, 8, 10, 15, 19, 21, 24, 25]
[1, 3, 4, 8, 9, 11, 16, 20, 22, 25, 26]
[1, 2, 5, 7, 11, 16, 18, 19, 23, 24, 26]
¤Ê¤¤¤·¤ç¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 17:34:19¡¡¡¡ MAIL:take4310@mobile.email.ne.jp HomePage:¤Þ¤ë¥±¥ó¤ÎÉô²°¡¡¡¡42480
¤Þ¤ë¥±¥ó
#42473 ¿¨È¯¤Î¿¨È¯¤Ç¡¢¡¢¡¢
[0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, 81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121, 243, 244, 246, 247, 252, 253, 255, 256, 271, 279, 280, 283, 284, 291, 293, 294, 300, 301, 607, 608, 610, 611, 616, 617, 619, 620, 634, 635, 637, 638, 643, 644, 646, 647, 688, 689, 691, 692, 697, 698, 700, 701, 715, 716, 718, 719, 724, 725, 727, 728]
82Ëç¤Î¥Ñ¥¿¡¼¥óȯ¸«¡£
º£Æü¤Ï¡¢¥×¥í¥°¥é¥àή¤·¤Ã¤Ñ¤Ê¤·¤Çµ¢¤ê¤Þ¤¹¡£
¤Ê¤¤¤·¤ç¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 17:42:28¡¡¡¡ MAIL:take4310@mobile.email.ne.jp HomePage:¤Þ¤ë¥±¥ó¤ÎÉô²°¡¡¡¡42481
ʪÍý¹¥¤­
0,1,3,4,9¡¦¡¦¡¦¤ò¤·¤Ð¤é¤¯¤«¤­¤À¤·¤Æ¤ß¤ë¤È
¿ôÎó¤Ë3¤În¾è¤¬½Ð¤¿¤é
¤½¤³¤Þ¤Ç¤Î¿ôÎó¤Î¹à¿ô¤Ï2¤În¾è+1
729=3¤Î6¾è
729¤Þ¤Ç¤Ï65¹à
728¤Þ¤Ç¤Ï64¹à¡£
ÂçºåÉÜ¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 18:02:50¡¡¡¡ ¡¡¡¡42482
¹«¤ÎÌ´
Á´¤¯Ê¬¤«¤é¤º¡¢ËÜͼºÆÅÙÌäÂê¤ò³«¤¯¤È¡¢¥Þ¥µ¥ë¤µ¤ó¤¬£³¿ÊË¡¤È½ñ¤¤¤Æ²¼¤µ¤Ã¤Æ¤¤¤é¤Ã¤·¤ã¤ë¤Ç¤Ï¡¦¡¦¡¦¡¦¡¢¤½¤ì¤Çʬ¤«¤ê¡¢64¤Ë¤Ïé¤êÃ夤¤¿¤Î¤Ç¤¹¤¬¡¦¡¦¡¦¡¦¡£
¿¿Çò¤­ÉٻΤÎÎæ¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 21:50:55¡¡¡¡ ¡¡¡¡42483
ʪÍý¹¥¤­
0¤«¤é½çÈÖ¤Ë728¤Þ¤ÇÄ´¤Ù¤Æ¤¤¤Ã¤Æ
¹¹¤ËÆþ¤ë¤³¤È¤¬²Äǽ¤Ê¿ô¤òÈô¤Ð¤·¤Æ¤Ï¤¤¤±¤Ê¤¤¤è¤¦¤Ë¤¹¤ë¤È
#42482¤Î²òË¡¤ÇºÇÂ礬¤â¤È¤á¤é¤ì¤ë¤Ï¤º¤Ç¤¹¡£
ÂçºåÉÜ¡¡¡¡ 10·î2Æü¡ÊÌÚ¡Ë 22:53:31¡¡¡¡ ¡¡¡¡42484
¤ª¡¼¤Á¤ã¤ó
#42480¤Î·ë²Ì¡Ê27Ë礫¤é11Ëç¥Ñ¥¿¡¼¥ó¤òºî¤ë¡Ë¤Ë¤è¤Ã¤Æ¡¢729Ë礫¤é¤Ï¤¿¤È¤¨¤Ð°Ê²¼¤Î¤è¤¦¤Ë¤·¤Æ88Ëç¥Ñ¥¿¡¼¥ó¤òºî¤ì¤Þ¤¹¡£

¡¡[0, 2, 6, 8, 18, 20, 24, 26] * 27 + [0, 1, 5, 6, 8, 14, 18, 19, 21, 25, 26]

81Ë礫¤é¤Ï22Ëç¥Ñ¥¿¡¼¥ó¡¢¤¿¤È¤¨¤Ð
¡¡[0, 2] * 27 + [0, 1, 5, 6, 8, 14, 18, 19, 21, 25, 26]
¤òºî¤ì¤ë¤³¤È¤¬¤ï¤«¤ê¤Þ¤¹¤¬¡¢¤µ¤é¤Ë23Ëç¡Ê°Ê¾å¡Ë¤Î¥Ñ¥¿¡¼¥ó¤¬Â¸ºß¤¹¤ë¤«¤¬µ¤¤Ë¤Ê¤ê¤Þ¤¹¡£¡Ê¸«¤Ä¤«¤ì¤Ð729Ëç¤ËÂФ·¤Æ92Ëç¡Ê°Ê¾å¡Ë¤Î¥Ñ¥¿¡¼¥ó¤âºî¤ì¤ë¡Ë
¤È¤¤¤¦¤ï¤±¤Ç81Ëç¤ËÂФ¹¤ëõº÷¥×¥í¥°¥é¥à¤òÁö¤é¤»¤Æ¤ß¤Æ¤¤¤Þ¤¹¤¬¡¢22Ëç¥Ñ¥¿¡¼¥ó¤ò¥Ý¥Ä¥Ý¥Ä¸«¤Ä¤±¤ë¤Ð¤«¤ê¤Ç¡¢23Ëç¥Ñ¥¿¡¼¥ó¤Ï¤Þ¤À¸«¤Ä¤«¤Ã¤Æ¤¤¤Þ¤»¤ó¡£¤³¤ì¤Þ¤Ç¤Î¤³¤È¤ò¹Í¤¨¤ë¤È¤¿¤Ö¤ó¤¢¤ë¤ó¤Ç¤·¤ç¤¦¤±¤É¡£

¡ÊÄɵ­¡Ë
ͽÁÛ¤ËÈ¿¤·¤Æ¡¢¤É¤¦¤â81Ëç¤ËÂФ¹¤ë23Ëç¥Ñ¥¿¡¼¥ó¤Ï¤Ê¤¤¤è¤¦¤Ç¤¹¡£
0¡Á80 ¤ò ¡Ê¶è´ÖA¡¡0¡Á26¡Ë¡Ê¶è´ÖB¡¡27¡Á53¡Ë¡Ê¶è´ÖC¡¡54¡Á80¡Ë¤Î3¶è´Ö¤Ëʬ¤±¤Æ¡Ê³Æ¶è´Ö¤«¤é¤ÏºÇÂç11Ëç¤Þ¤Ç¡Ë¡¢¶è´ÖA¤Þ¤¿¤ÏC ¤Î¤¤¤º¤ì¤«¤Ë 11Ë礢¤ë¥Ñ¥¿¡¼¥ó¡¢10Ë礢¤ë¥Ñ¥¿¡¼¥ó¡¢¡Ä¡Ä¡¢6Ë礢¤ë¥Ñ¥¿¡¼¥ó¡¢¤È½ç¤Ëõ¤·¤Æ¤ß¤Þ¤·¤¿¤¬¸«¤Ä¤«¤ê¤Þ¤»¤ó¤Ç¤·¤¿¡£
¤È¤Ê¤ë¤È¼¡¤Ï243Ë礫¤é44Ëç¤òĶ¤¨¤ë¥Ñ¥¿¡¼¥ó¤òºî¤ì¤ë¤«¡Ä¡Ä¤Ê¤Î¤Ç¤¹¤¬¡¢¤µ¤¹¤¬¤Ë¥×¥í¥°¥é¥à¤Ç¤â¸·¤·¤¤µ¤¤¬¤·¤Þ¤¹¡£
¡¡¡¡ 10·î3Æü¡Ê¶â¡Ë 3:01:45¡¡¡¡ ¡¡¡¡42485
Halt0
¾®¤µ¤¤ÃͤˤĤ¤¤Æ¥×¥í¥°¥é¥à¤ÇÁíÅö¤ê¤·¤¿¤Î¤ò´ð¤Ë¤·¤Æ¸¡º÷¤·¤Æ¤ß¤¿¤È¤³¤í,
¿ôÎóÂ缭ŵ¤ÎA003002¤¬º£²ó¤ÎÌäÂꤽ¤Î¤â¤Î¤Ç¤¹¤Í. ¢ª https://oeis.org/A003002
"Size of the largest subset of the numbers [1...n] which does not contain a 3-term arithmetic progression."

¥³¥á¥ó¥È¤Ë"More terms of this sequence can be found directly from A065825"¤È¤¢¤ê¤Þ¤¹.
A065825¤È¤¤¤¦¤Î¤Ï¤³¤Á¤é. ¢ª https://oeis.org/A065825
"Smallest k such that n numbers may be picked in {1,...,k} with no three terms in arithmetic progression."

Íפ¹¤ë¤Ë, º£²ó¤ÎÌäÂê¤Î¾ì¹ç, ¤³¤Î A065825 ¤Î¿ôÎó¤ò a(n) ¤È¤ª¤¯¤È¤­, a(n)¡ä729 ¤Ë¤Ê¤ë¤è¤¦¤ÊºÇ¾®¤Î n ¤òµá¤á¤ì¤Ð¤¤¤¤ (Åú¤¨¤Ï n-1 ¤Ë¤Ê¤ë) ¤ï¤±¤Ç¤¹¤¬¡Ä¸½ºß¤Î¤È¤³¤í, ÃΤé¤ì¤Æ¤¤¤ë¤Î¤Ï¤É¤¦¤â a(41)=194 ¤Þ¤Ç¤ß¤¿¤¤¤Ç¤¹¤Í. http://www.math.uni.wroc.pl/~jwr/non-ave.htm ¤Ë¤è¤ë¤È, ¤³¤ÎÃͤòµá¤á¤ë¤Î¤Ë 2.8 GHz CPU ¤Ç 11.5 Æü´Ö¤«¤«¤Ã¤¿¤½¤¦¤Ç¤¹. ¤´»²¹Í¤Þ¤Ç¤Ë.
¡¡¡¡ 10·î4Æü¡ÊÅÚ¡Ë 4:18:03¡¡¡¡ ¡¡¡¡42486
¤ª¡¼¤Á¤ã¤ó
Halt0¤µ¤ó#42486¤Î¶µ¤¨¤Æ¤¯¤À¤µ¤Ã¤¿¥µ¥¤¥È¤Ë¤è¤ë¤È a(45)¡å227 ¤È¤Î¤³¤È¤Ê¤Î¤Ç¡¢227Ëç(<243)¤«¤é45Ëç¥Ñ¥¿¡¼¥ó¤Ïºî¤ì¤ë¤ó¤Ç¤¹¤Í¡£
¤³¤ì¤ò»È¤¨¤Ð 681Ëç (<729) ¤«¤é90Ëç¥Ñ¥¿¡¼¥ó¤òºî¤ë¤³¤È¤â¤Ç¤­¤Þ¤¹¡£

¡ô¤³¤Î 90 ¤¬º£¤ï¤«¤ë¸Â³¦¤Ç¤·¤ç¤¦¤«¡Ä¡Ä
¡¡¡¡ 10·î4Æü¡ÊÅÚ¡Ë 5:32:26¡¡¡¡ ¡¡¡¡42487
¤µ¤¤¤È»¶
#42487 ¤ª¡¼¤Á¤ã¤ó¤µ¤ó¡¡¡¡a(45)¡å227 ¤Ê¤é680Ë礸¤ã¤Ê¤¤¤Ç¤·¤ç¤¦¤«¡©
¡¡¡¡ 10·î4Æü¡ÊÅÚ¡Ë 12:29:21¡¡¡¡ ¡¡¡¡42488
uchinyan
#42480¡¤#42481¡¤#42485¡¤#42486¡¤#42487
ÍýÏÀŪ¤Ê¥¢¥×¥í¡¼¥Á¤ÏÆñ¤·¤½¤¦¤À¤Ã¤¿¤Î¤Ç¥×¥í¥°¥é¥à¥Á¥§¥Ã¥¯¤ÎÍͻҤò¸«¤Æ¤¤¤¿¤Î¤Ç¤¹¤¬¡¤
#42486¤ÎÍͻҤǤÏËÜÅö¤ÎÆñÌä¤Î¤è¤¦¤Ç¤¹¤Í¡£

#42485¤Î¹Í¤¨Êý¤Ë¤·¤¿¤¬¤Ã¤Æ¡¤¼«Ê¬¤ÎÍý²ò¤Î¤¿¤á¤Ë¾¯¤·¤Þ¤È¤á¤Æ¤ª¤¯¤È¡¤¼¡¤Î¤è¤¦¤Ë¤Ê¤ë¤Î¤Ç¤·¤ç¤¦¤«¡£

0 ¡Á 3^n - 1 ¤ÎºÇÂçËç¿ô¤ò c(n) ¤È¤¹¤ì¤Ð¡¤0 ¡Á 3^(n+1) - 1 ¤Î c(n+1) ¤Ï¡¤
0 ¡Á 3^(n+1) - 1 ¤ò¡¤
0 ¡Á 3^n - 1¡¤3^n ¡Á 2 * 3^n - 1¡¤2 * 3^n ¡Á 3^(n+1) - 1¡¤¤Î»°¤Ä¤Î¶è´Ö¤Ëʬ¤±¤Æ¡¤
0 ¡Á 3^n - 1 ¤Ë¤Ï¡¤0 ¡Á 3^n - 1 ¤Î²ò¤Î°ì¤Ä¤ò¤½¤Î¤Þ¤Þ
2 * 3^n ¡Á 3^(n+1) - 1 ¤Ë¤Ï¡¤0 ¡Á 3^n - 1 ¤Î²ò¤Î°ì¤Ä¤Î³Æ¡¹¤Î¿ô¤Ë 2 * 3^n ¤ò­¤·¤¿¤â¤Î
3^n ¡Á 2 * 3^n - 1 ¤Ë¤Ï¡¤0 ¡Á 3^n - 1 ¤È 2 * 3^n ¡Á 3^(n+1) - 1 ¤Î¿ô¤ÎÊ¿¶Ñ¤Ë¤Ê¤é¤Ê¤¤¤â¤Î
¤òÆþ¤ì¤ë¤è¤¦¤Ë¤¹¤ì¤Ð¡¤Âê°Õ¤òËþ¤¿¤¹¤â¤Î¤¬ºî¤ì¤Æ¡¤¤³¤Î¤È¤­¡¤
0 ¡Á 3^n - 1 ¤Ï c(n)¡¤2 * 3^n ¡Á 3^(n+1) - 1 ¤Ï c(n)¡¤3^n ¡Á 2 * 3^n - 1 ¤Ï d(n) ¤È¤¹¤ì¤Ð¡¤
c(n+1) >= 2 * c(n) + d(n)
¤Ë¤Ê¤ê¤Þ¤¹¡£
ÌäÂê¤Ï¡¤ÉÔÅù¹æ¤È d(n) ¤Ç¤¹¤¬¡¤¥×¥í¥°¥é¥à¤Ë¤è¤ë¼Â¸³¤Ç¤Ï¡¤
c(n+1) = 2 * c(n) + d(n)¡¤d(n) = 0 Ëô¤Ï 1 ÄøÅÙ
¤È¤Ê¤ê¤½¤¦¤Ç¤¹¤Í¡£

¤â¤·¡¤
0 ¡Á 3^n - 1 ¤Ë¤Ï¡¤0 ¡Á 3^n - 1 ¤Î²ò¤Î°ì¤Ä¤ò¤½¤Î¤Þ¤Þ
2 * 3^n ¡Á 3^(n+1) - 1 ¤Ë¤Ï¡¤0 ¡Á 3^n - 1 ¤ËÆþ¤ì¤¿¤Î¤ÈƱ¤¸¤â¤Î
¤òÆþ¤ì¤ë¤È¤¹¤ì¤Ð¡¤3^n ¡Á 2 * 3^n - 1 ¤Ë¤ÏÆþ¤ì¤é¤ì¤º d(n) = 0 ¤Ë¤Ê¤ê¤Þ¤¹
¾ï¤Ë¤³¤¦¤¹¤ë¤³¤È¤Ë¤·¤ÆÉÔÅù¹æ¤òÅù¹æ¤Ë¤¹¤ì¤Ð¡¤
c(n+1) = 2 * c(n)¡¤c(n) = 2^n
¤³¤ì¤Ï¥Þ¥µ¥ë¤µ¤ó¤Î´üÂÔ¤·¤Æ¤¤¤¿Í½ÁÛ²ò¤Çº£²ó¤Î½ÐÂê¤Î¥Ù¡¼¥¹¤Ë¤Ê¤Ã¤¿¤â¤Î¤Ç¡¤3 ¿ÊË¡²ò¼á¤¬ÍưפǤ¹¡£
¤·¤«¤·¡¤¼ÂºÝ¤Ë¤Ï¡¤ºÇÂç¤è¤ê¤â¤à¤·¤í¡¤²¼³¦¡¤¤À¤Ã¤¿¤è¤¦¤Ç¤¹¡£

¤â¤·¡¤2 * 3^n ¡Á 3^(n+1) - 1 ¤òÄ´À°¤·¤Æ¾ï¤Ë d(n) = 1 ¤È¤Ç¤­ÉÔÅù¹æ¤¬Åù¹æ¤Ë¤Ê¤ë¤Ê¤é¤Ð¡¤
c(n+1) = 2 * c(n) + 1¡¤c(n) = 3 * 2^(n-1) - 1
¤³¤ì¤Ï¡¤n = 1, 2, 3 ¤Ç¤ÏÀµ¤·¤¯¡¤#42485¤Î¤ª¡¼¤Á¤ã¤ó¤µ¤ó¤ÎºÇ½é¤ÎͽÁۤǤ¹¤¬¡¤
¤½¤ì°Ê¹ß¤Ï¤³¤ì¤è¤ê¾®¤µ¤¯¤Ê¤ë¤è¤¦¤Ç¤¹¡£¤³¤ì¤Ï¡¤d(n) = 0 ¤¬Áý¤¨¤ë¡¤Â¿¤¯¤¬ 0¡¤¤ò°ÕÌ£¤·¤Þ¤¹¡£
¤Ä¤Þ¤ê¡¤ÍýÏÀ¾å¤Ç¤Ï¤Ê¤¯¡¤¤¢¤¯¤Þ¤Ç¤Îº£¤Þ¤Ç¤Î¥×¥í¥°¥é¥à¤Ç¤Î¼Â¸³¤ÎͽÁۤǤ¹¤¬¡¤
¤³¤ÎÃͤϡ¤¾å³¦¡¤¤Î°ì¤Ä¤Î¤è¤¦¤Ç¤¹¡£
¤Á¤Ê¤ß¤Ë¡¤¤³¤Î¾ì¹ç¤Î 0 ¡Á 728 ¤ËÂФ¹¤ë¤Î¤Ï c(6) = 95 ¤Ç¤¹¡£

¤µ¤é¤Ë¡¤
n = 1, 2, 3¡¤c(n+1) = 2 * c(n) + 1¡¤n >= 4¡¤c(n+1) = 2 * c(n)
¤È²¾Äꤹ¤ë¤È¡¤
n = 1, 2, 3¡¤c(n) = 3 * 2^(n-1) - 1¡¤n >= 4¡¤c(n+1) = 11 * 2^(n-3)
¤È¤Ê¤ê¡¤0 ¡Á 728 ¤ËÂФ¹¤ë¤Î¤Ï c(6) = 88 ¤È¤Ê¤ê¡¤#42485¤ÎºÇ½é¤ÎËç¿ô¤È°ìÃפ·¤Þ¤¹¡£

¤·¤«¤·¤Ê¤¬¤é¡¤#42487¤Ë¤è¤ë¤È 90 ¤¬²Äǽ¤À¤í¤¦¡¤¤È¤¤¤¦¤³¤È¤Ê¤Î¤Ç¡¤
¤É¤³¤«¤Ç¥Ý¥Ä¥Ý¥Ä¤È d(n) = 1 ¤Ë¤Ê¤ë¤â¤Î¤È»×¤ï¤ì¤Þ¤¹¡£
¤½¤ì¤È¤âÁ´¤¯°Û¤Ê¤ë¥Ñ¥¿¡¼¥ó¤Ê¤Î¤Ç¤·¤ç¤¦¤«¡©
¥Í¥³¤Î½»¤à²È¡¡¡¡ 10·î4Æü¡ÊÅÚ¡Ë 14:45:30¡¡¡¡ ¡¡¡¡42489
¤ª¡¼¤Á¤ã¤ó
¤µ¤¤¤È»¶¤µ¤ó#42488¤Î¤ª¤Ã¤·¤ã¤ë¤È¤ª¤ê¤Ç¤¹¡£
3¿Ê¿ô¡¦¶è´Ö3ʬ³ä¤Ç¹Í¤¨¤ë¤Î¤ò°ú¤­¤º¤Ã¤Æ¤¤¤Æ¡¢Ãæ´Ö¤Î¥®¥ã¥Ã¥×Éôʬ¤ò 1 µÍ¤á¤ë¤³¤È¤¬¤Ç¤­¤ë¤Î¤ò¸«Íî¤È¤·¤Æ¤¤¤Þ¤·¤¿¡£

uchinyan¤µ¤ó#42489
¡Ö¤ª¤Þ¤±¡×¤ÎÉÕ¤­¶ñ¹ç¤ò¤Þ¤È¤á¤ë¤È
d(1)=d(2)=1, d(3)=0, d(4)¡æ1, d(5)=? ¤È¤¤¤¦¤³¤È¤Ç¤¹¤Í¡£
680Ëç¤Ç90Ëç¤Ê¤é¡¢¤µ¤é¤Ë49Ëç¤Î¥¹¥Ú¡¼¥¹Áý¤Ç¤â¤¦1Ëç¤È¤¤¤­¤¿¤¤¤È¤³¤í¤Ç¤¹¤¬¡Ä¡Ä

¡¡¡¡ 10·î4Æü¡ÊÅÚ¡Ë 18:54:00¡¡¡¡ ¡¡¡¡42490
Halt0
http://www.math.uni.wroc.pl/~jwr/non-ave/ ¤ò¹¹¤Ë¸«¤Æ¤ß¤¿¤È¤³¤í,

http://www.math.uni.wroc.pl/~jwr/non-ave/DATABASE.TXT
a(93)<=676 1 2 8 11 13 16 22 23 27 29 49 51 54 55 65 67 68 74 77 78 84 98 130 136 144 149 156 159 161 164 170 171 175 177 197 199 202 203 213 215 216 222 225 226 232 246 278 284 440 445 452 455 457 460 466 467 471 473 493 495 498 499 509 511 512 518 521 522 528 542 574 580 588 593 600 603 605 608 614 615 619 621 641 643 646 647 657 659 660 666 669 670 676 (1095251260 Gavin Theobald)

¤È¤Î¤³¤È¤Ç 93 Ëç¤Ï²Äǽ¤ÊÌÏÍÍ.

http://www.math.uni.wroc.pl/~jwr/non-ave/BEST.TXT ¤ò¸«¤ë¤È, ¤É¤¦¤â a(96)<=709 ¤¬ Theorem 24 ¤Ë¤è¤Ã¤Æ¤ï¤«¤Ã¤Æ¤¤¤ë¤Ã¤Ý¤¤¤Ç¤¹¤¬ (¤¿¤Ö¤ó), ¶ñÂÎŪ¤Ë¤É¤Î¤è¤¦¤Ë½ñ¤­É½¤»¤ë¤Î¤«¤Ï¤è¤¯¤ï¤«¤ê¤Þ¤»¤ó. Theorem 24 ¤È¤¤¤¦¤Î¤Ï http://www.math.uni.wroc.pl/~jwr/non-ave/methods.htm ¤Î Theorem N ¤Î¤³¤È¤ß¤¿¤¤¤Ç¤¹¤¬, ¤³¤ÎÄêÍý¤¬¤É¤Î¤è¤¦¤ËƳ¤«¤ì¤ë¤Î¤«¤â, ¤³¤ÎÄêÍý¤ò¤É¤¦¤ä¤Ã¤ÆŬÍѤ·¤¿¤Î¤«¤â, »ä¤Ë¤Ï¤è¤¯¤ï¤«¤ê¤Þ¤»¤ó¤Ç¤·¤¿.

#Äɵ­
¤Ò¤Í¤ê¤â²¿¤â¤Ê¤¤¤ä¤êÊý¤Ç¤¹¤¬¾å¤Î Gavin Theobald »á¤Î·ë²Ì¤Ë 690 722 728 ¤òÉÕ¤±²Ã¤¨¤ì¤Ð 96 Ëç¤Ë¤Ç¤­¤ë¤Î¤Ç, ¤È¤ê¤¢¤¨¤º a(96)<=728 ¤Ç¤¹¤Í. a(97) ¤Ë´Ø¤·¤Æ¤Ï̤¤À a(97)<=736 ¤Þ¤Ç¤·¤«¤ï¤«¤Ã¤Æ¤Ê¤¤¤Ã¤Ý¤¤¤Î¤Ç (¤È¤¤¤¦¤«¹¹¤Ë736¤òÉÕ¤±²Ã¤¨¤ì¤Ð¤½¤ì¤ÇÀ®Î©¤¹¤ëÌÏÍÍ) ¸½»þÅÀ¤ÇËÜÌä¤Î¸Â³¦¤Ï96Ëç¤È»×¤ï¤ì¤Þ¤¹.

¡¡¡¡ 10·î4Æü¡ÊÅÚ¡Ë 20:23:00¡¡¡¡ ¡¡¡¡42491
¤ª¡¼¤Á¤ã¤ó
Halt0¤µ¤ó#42491
a(96)¡å709 ¤È¤¤¤¦¤Î¤Ï¡¢Theorem N ¤Ë¤ª¤¤¤Æ N=24,q=4,r=24 ¤È¤·¤ÆÆÀ¤é¤ì¤ë¤ß¤¿¤¤¤Ç¤¹¡£

N=24 ¤ËÂФ·¤Æ¤Ï modular solution ¤Î m(24)¡å148 ¤«¤é P=148 ¤È
{k_1 ¡Ä¡Ä k_24} = {0 6 14 19 26 29 31 34 40 41 45 47 67 69 72 73 83 85 86 92 95 96 102 116} + 1
¤òÆÀ¤Þ¤¹¡£
a(4)=5, k_24=117 ¤Ç¤¹¡£
¤³¤ì¤é¤ò Theorem N ¤Î¼°¤ËÂåÆþ¤·¤Æ

a(24*(4-1)+24) ¡å 148*(5-1)+117

a(96)¡å709 ¤¬ÆÀ¤é¤ì¤Þ¤¹¡£
¤Á¤ç¤Ã¤ÈÌÌÅݤʤΤϡ¢Theorem N ¤Ë»È¤¦ modular solution {k_r} ¤Ï http://www.math.uni.wroc.pl/~jwr/non-ave/DATABASE.TXT ¤Ë¤¢¤ë¤â¤Î¤ò¤½¤Î¤Þ¤Þ»È¤¦¤Î¤Ç¤Ï¤Ê¤¯¡¢(1) ¤¹¤Ù¤Æ 1°Ê¾å¤Ë¤Ê¤ë¤è¤¦¤Ë¡¢(2) »È¤¤¤¿¤¤ k_r ¤¬ºÇ¾®¤Ë¤Ê¤ë¤è¤¦¤Ë¡¢mod P ¤ÇŬÅö¤Ë¥í¡¼¥Æ¡¼¥·¥ç¥ó¤¹¤ë¤È¤¤¤¦¤³¤È¤Ç¤¹¡£¡Ê¾å¤Î¾ì¹ç¤Ï 1 ¤ò²Ã¤¨¤ë¤À¤±¤Ç´Êñ¤Ç¤·¤¿¤¬¡Ë

¢¨ modular solution ¤È¤¤¤¦¤Î¤Ï¡¢ËÜÌä¤Î¤è¤¦¤Êξü¤ò¤â¤Ã¤¿¶õ´Ö¤Î¤«¤ï¤ê¤Ë¡¢Î¾Ã¼¤¬¤Ä¤Ê¤¬¤Ã¤Æ¼þ´ü²½¤·¤¿¶õ´Ö¤Ë¤ª¤¤¤ÆÅùº¹Éôʬ¿ôÎó¤ò´Þ¤Þ¤Ê¤¤¿ôÎó¤ò¹Í¤¨¤¿¤â¤Î¤Ç¤¹¡£
¤¿¤È¤¨¤Ð¾å¤Î {k_r} ¤Ï 0¡Á147 ¤Î¼þ´üŪ¶õ´Ö¾å¤Ç¡¢Åùº¹Éôʬ¿ôÎó¤ò´Þ¤Þ¤Ê¤¤¿ôÎó¤Ç¤¹¡£

¡ÊÄɵ­¡Ë
Theorem N ¤Î¹Í¤¨Êý¤Ï¡¢modular solution ¤òŬÅö¤Ê¥®¥ã¥Ã¥×¶è´Ö¤ò¤Ï¤µ¤ß¤Ê¤¬¤é¤Ä¤Ê¤¤¤Ç¤¤¤¯¡¢¤È¤¤¤¦¼Â¤Ï¤«¤Ê¤ê¥·¥ó¥×¥ë¤Ê¤â¤Î¤Ç¤¹¡£
¤¿¤È¤¨¤Ð¾å¤Î a(96) ¤Î¾ì¹ç¤Ï¡¢

¡¡¡¡[M24(148)][M24(148)][¥®¥ã¥Ã¥×(148)][M24(148)][M24¤ÎÀèƬÉôʬ(117)]
¡¡¡¡¡¡¢¨ M24 ¤Ï modular solution, ()Æâ¤Ï¶è´ÖŤµ

¤Ë¤è¤Ã¤Æ a(96) ¤ËÂбþ¤¹¤ë¿ôÎó¤òºî¤Ã¤Æ¤¤¤Þ¤¹¡£
modular solution ¤ò»È¤¦¤³¤È¤Ç¡¢¤È¤Ê¤ê¤¢¤¦¶è´Ö¤Ç´³¾Ä¤·¤¢¤Ã¤ÆÅùº¹¿ôÎ󤬽и½¤¹¤ë¤Î¤òËɤ¤¤Ç¤¤¤Þ¤¹¡£
¤Þ¤¿Á´ÂΤι½Â¤¤Ï a(4) ¤ËÂбþ¤¹¤ë {0,1,3,4} ¤Ç·è¤Þ¤Ã¤Æ¤ª¤ê¡¢3¤Ä¤Î¶è´Ö¤ò¤Þ¤¿¤¬¤ëÅùº¹¿ôÎ󤬽и½¤·¤Ê¤¤¤è¤¦¤Ë¤·¤Æ¤¤¤Þ¤¹¡£
¡¡¡¡ 10·î4Æü¡ÊÅÚ¡Ë 23:27:53¡¡¡¡ ¡¡¡¡42492
Halt0
#42492
¤ª¤ª, ¤½¤¦¤¤¤¦¤³¤È¤Ç¤·¤¿¤«. ¤¢¤ê¤¬¤È¤¦¤´¤¶¤¤¤Þ¤¹. ¤É¤¦¤â modular solution ¤ÎÄêµÁ¤ò´ª°ã¤¤¤·¤Æ¤¤¤¿¤Ã¤Ý¤¤¤Ç¤¹.
¤Ä¤Þ¤ê,

{0 6 14 19 26 29 31 34 40 41 45 47 67 69 72 73 83 85 86 92 95 96 102 116} + 1 + 148*({1 2 4 5} - 1)
={1 7 15 20 27 30 32 35 41 42 46 48 68 70 73 74 84 86 87 93 96 97 103 117 149 155 163 168 175 178 180 183 189 190 194 196 216 218 221 222 232 234 235 241 244 245 251 265 445 451 459 464 471 474 476 479 485 486 490 492 512 514 517 518 528 530 531 537 540 541 547 561 593 599 607 612 619 622 624 627 633 634 638 640 660 662 665 666 676 678 679 685 688 689 695 709}

¤ò¹½À®¤·¤Æ a(96) ¤Î¾å³¦¤òÆÀ¤Æ¤¤¤ë¤Î¤Ç¤¹¤Í. ¤Ê¤ë¤Û¤É.
(°ì½Ö modular solution ¤«¤é x,y ¤ò¤È¤Ã¤Æ¤­¤¿¤È¤­ (x+y)/2 + 74 ¤¬ modular solution ¤Ë´Þ¤Þ¤ì¤Æ¤¤¤ë¤È¤Þ¤º¤¤¤±¤É¤½¤Î²ÄǽÀ­¤Ï¤Ê¤¤¤Î¤«¡Ä¡© ¤Ê¤É¤ÈǺ¤ó¤Ç¤·¤Þ¤¤¤Þ¤·¤¿¤¬,
x, (x+y)/2+74, y ¤¬ mod 148 ¤ÇÅùº¹¿ôÎó¤Ë¤Ê¤ë¤«¤éÄêµÁ¤«¤é¥¢¥¦¥È¤Ç¤·¤¿¤Í. Ê¿¶Ñ¤È¤¤¤¦¸ÀÍդ˰ú¤­¤Å¤é¤ì¤Æ¤¤¤¿¡Ä)
¥È¥Ã¥×¥Ú¡¼¥¸¤Ë"Note that if m(n) is even, then terms i and i+m(n)/2 exclude each other. "¤È½ñ¤«¤ì¤Æ¤¤¤ë¤³¤È¤Ë¤â¹çÅÀ¤¬¤¤¤­¤Þ¤·¤¿.

¡¡¡¡ 10·î6Æü¡Ê·î¡Ë 4:05:37¡¡¡¡ ¡¡¡¡42493
uchinyan
#42491¡¤#42492¡¤#42493
¾ðÊóÄ󶡤ȲòÀâ¤ò¤¢¤ê¤¬¤È¤¦¤´¤¶¤¤¤Þ¤¹¡£
¤Õ¡¼¤à¡¤È¾Ê¬Ê¬¤«¤Ã¤¿¤è¤¦¤Ç¼Â¤Ïʬ¤«¤Ã¤Æ¤Ê¤¤¤À¤í¤¦¤Ê¡¤¤È¤Ï»×¤¦¤â¤Î¤Î¡¤ÏäÎή¤ì¤Ï¡¤¤Ê¤ë¤Û¤É¡¤¤È¤¤¤¦´¶¤¸¤Ç¤¹¡£

·ë¶É¤Î¤È¤³¤í¡¤96 ¤Ï¤Ç¤­¤ë¡¤97 ¤Ï¸½ºß¤Ï²Äǽ¤«¤Ïʬ¤«¤é¤Ê¤¤¡¤¤¬Â¿Ê¬ÌµÍý¡©¡¤¤È¤¤¤¦¤³¤È¤Ç¤·¤ç¤¦¤«¡£

»ä¤Î#42489¤Ç¡¤¤¹¤Ù¤Æ¤Î d(n) ¤¬ 1 ¤Î 95 ¤¬¾å³¦¡¤¤«¤Ê¤ÈͽÁÛ¤òΩ¤Æ¤Þ¤·¤¿¤¬¸«»ö¤Ë¤Ï¤º¤ì¤Þ¤·¤¿¡£
n ¤¬Â礭¤¯¤Ê¤ì¤Ð·ä´Ö¤¬Â¿¤¯¤Ê¤ë¤Î¤Ç d(n) ¤¬Â礭¤¯¤Ê¤Ã¤Æ¤âÉԻ׵ĤϤʤ¤¤ï¤±¤Ç¤¹¤·¡¤
¤½¤â¤½¤âñ½ã¤Ê£³Ê¬³ä¤«¤éÆÀ¤¿¼°¤Ï¤â¤È¤â¤ÈÉÔÅù¼°¤Ç¡¤¤â¤·Åù¼°¤À¤Ã¤¿¤é¡¤¤È¤¤¤¦²¾Äê¤Î²¼¤Ç¤Îɾ²Á¤Ê¤Î¤Ç¡¤
¤Ï¤º¤ì¤Æ¤âÅö¤¿¤êÁ°¤Ç¤¹¤Í¡£
¼ÂºÝ¡¤a(96) ¤Î¹½À®¤Ï¡¤»÷¤¿¤è¤¦¤Ê¹Í¤¨Êý¤Î¤è¤¦¤Ç¤¹¤¬¡¤¤è¤ê°ìÈ̲½¤µ¤ì¤¿¤â¤Î¤Î¤è¤¦¤Ç¤¹¤Í¡£

¤¤¤í¤¤¤í¤ÈÊÙ¶¯¤Ë¤Ê¤ê¤Þ¤¹¡£

ÊѤÊÏäǤ¹¤¬¡¥¡¥¡¥

º£²ó¤ÎÌäÂê¤Ï½ÐÂê¼Ô¤Î°Õ¿Þ¤ò¤Ï¤ë¤«¤ËĶ¤¨¤Æ¤·¤Þ¤Ã¤¿ÅÀ¤Ç¤Ï¼ºÇÔºî¤È¸À¤ï¤¶¤ë¤òÆÀ¤Ê¤¤¤Ç¤·¤ç¤¦¤¬¡¤
ÍÍ¡¹¤Ê¿·¤¿¤ÊÃ諤òÆÀ¤é¤ì¤¿ÅÀ¤Ç¤ÏÂ礭¤Ê¼ý³Ï¤¬¤¢¤ê¤Þ¤·¤¿¡£
¤³¤Î¥µ¥¤¥È¤ÎÌäÂê¤Ï¡¤Â¾¤Î¥µ¥¤¥È¤È°ã¤Ã¤Æ¡¤¤¿¤À²ò¤¤¤Æ½ª¤ï¤ê¡¤¤Ç¤Ï¤Ê¤¯¿¼¤ß¤Î¤¢¤ëÌäÂê¤â¿¤¤¤Î¤Ç¡¤
¤¤¤í¤¤¤í¤È¹Í»¡¤¬¤Ç¤­¤Æ³Ú¤·¤¤¤Ç¤¹¡££±½µ´Ö¤È¤¤¤¦»þ´Ö¤â¤Á¤ç¤¦¤É¤¤¤¤¤è¤¦¤Ë»×¤¤¤Þ¤¹¡£

¥Þ¥µ¥ë¤µ¤ó¡¤¤³¤ì¤«¤é¤â³Ú¤·¤ß¤Ë¤·¤Æ¤¤¤Þ¤¹¤Í¡£
¥Í¥³¤Î½»¤à²È¡¡¡¡ 10·î5Æü¡ÊÆü¡Ë 12:14:22¡¡¡¡ MAIL:uchi@sco.bekkoame.ne.jp ¡¡¡¡42495
¥Þ¥µ¥ë
º£²ó¤Ï¤´ÌÂÏǤò¤ª¤«¤±¤·¡¢¿½¤·Ìõ¤¢¤ê¤Þ¤»¤ó¡£¤·¤«¤â¡ÖËÜÅö¤ÎÀµ²òõ¤·¡×¤Ï¤ß¤Ê¤µ¤ó¤ËǤ¤»¤Ã¤­¤ê¤Ç...¤¹¤ß¤Þ¤»¤ó¡£

²¿¿Í¤«¤ÎÊý¤Ï¡¢Àµ²òõ¤·¤Î²áÄø¤ò³Ú¤·¤ó¤Ç¤¯¤À¤µ¤Ã¤¿¤è¤¦¤Ç¤¹¤¬¡¢¤ä¤Ï¤êËÜÍè¤Ï¤¢¤Ã¤Æ¤Ï¤Ê¤é¤Ê¤¤¤³¤È¤Ç¤¹¡£¡Ê¤³¤ì¤¬Æþ»î¤À¤Ã¤¿¤éÂçÊѤʤ³¤È¤Ç¤¹...¡Ë

¸ü´é¤Ï¤Ê¤Ï¤À¤·¤¤¤Ç¤¹¤¬¡¢³§¤µ¤ó¤Î½ñ¤­¹þ¤ß¤â¤Á¤ç¤Ã¤È³Ú¤·¤¯Æɤó¤Ç¤¤¤¿¤ê¤·¤Þ¤¹¡£¡Ê¤¹¤ß¤Þ¤»¤ó..¡Ëº£¸å¤È¤â¡¢¤è¤í¤·¤¯¤ª´ê¤¤¤¤¤¿¤·¤Þ¤¹¡£º£²ó¤Ï¿½¤·Ìõ¤´¤¶¤¤¤Þ¤»¤ó¤Ç¤·¤¿¡£m(__)m
MacbookPro¡¡¡¡ 10·î5Æü¡ÊÆü¡Ë 20:03:24¡¡¡¡ HomePage:»»¥Á¥ã¥ì¡¡¡¡42496
ʪÍý¹¥¤­
96¤«97¤«¡¢ËÜÅö¤Ï¤É¤Á¤é¤Ê¤Î¤Ç¤·¤ç¤¦¤«¡©
¤³¤ì¤Ï¾®³ØÀ¸¤Ç¤ÏÍý²ò¤Ç¤­¤Ê¤¤¤Ç¤·¤ç¤¦¤Í¡£
ÂçºåÉÜ¡¡¡¡ 10·î5Æü¡ÊÆü¡Ë 20:26:04¡¡¡¡ ¡¡¡¡42497