¤¢¤ß¡¼ |
ÃÏÌ£¤Ë¾ì¹çʬ¤±¤·¤Þ¤·¤¿¡£
£±¡Ü15¡Ü45¡Ü15¡Ü40¡Ü40¡Ü120¡Ü120¡á396(Ä̤ê) ÅÓÃæºî¶È¤·¤Ê¤¬¤é¡ÖµÕ»»¤«¤é°ú¤¤¤¿Êý¤¬Áᤫ¤Ã¤¿¤Ê¤¡¡×¤È¼ÙÇ°¤òÊú¤¤Ä¤Ä¡£ ¤Á¤Ê¤ß¤Ë¼ÙÇ°(¡©)¤Î¾ì¹ç¤Ï 720¡Ý(144¡Ü90¡Ü90)¡á396(Ä̤ê)¡¤¤Ç¤¹¡£ |
¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 0:16:31¡¡¡¡
¡¡¡¡33462 |
¿ô³Ú¼Ô |
324¤òÁ÷¤Ã¤Æ¤¤¤Þ¤·¤¿¡£¡Ê»ÄÇ°¡Ë |
²£ÉÍ¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 0:19:22¡¡¡¡
MAIL:iida@ae.keio.ac.jp ¡¡¡¡33463 |
Â纬·àÃÄ°÷ |
¤¢¤ß¡¼¤µ¤ó¤Î±¾¤¦µÕ»»¤Ç·×»»¤·¤Þ¤·¤¿¡£
Ï»²ó·«¤êÊÖ¤·¤Æ¸µ¤ÎÀʽç¤Ë¤â¤É¤é¤Ê¤¤¤Î¤¬²¿Ä̤ꤢ¤ë¤Î¤«¹Í¤¨¤Þ¤·¤¿¡£ £¶¤ÎÌó¿ô¤Ç¤Ï¤Ê¤¤¡¢£´¿Í¤È£µ¿Í¤À¤±¤Î´Ö¤Ç¤ÎÀʤ¬½Û´Ä¤¬È¯À¸¤¹¤ë¤È¡¢ Ï»²ó·«¤êÊÖ¤·¤¿¤¢¤È¤Ë¸µ¤ÎÀʽç¤ËÌá¤é¤Ê¤¤¤Î¤Ç¡¢¤½¤Î¾ì¹ç¤Ï¤½¤ì¤¾¤ì¡¡ £´¿Í´Ö¤Î½Û´Ä¤Ç¡¡6*5*3*2*1*1¡¡¡á¡¡180Ä̤ꡢ ¸Þ¿Í´Ö¤Î½Û´Ä¤Ç¡¡6*4*3*2*1*1¡¡¡á¡¡144ÄÌ¤ê ¤¬¹Í¤¨¤é¤ì¤ë¤Î¤Ç¡¢¤¹¤Ù¤Æ¤ÎÁȤ߹ç¤ï¤»720Ä̤꤫¤é¤½¤ì¤é¤òº¹¤·°ú¤¤¤Æ¡¢ 720-180-144¡á396¡¡¤È¤Ê¤ê¤Þ¤·¤¿¡£ |
¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 0:26:04¡¡¡¡
¡¡¡¡33464 |
¤¢¡¼¤¯ |
½ê°âÂå¿ô¤Ç¤Î½ä²ó·²¤ÎÌäÂê¤Ç¤¹¤Í¡£
Î㤨¤Ð6¿Í¤¬Æ±»þ¤Ë½é¤á¤Æ¸µ¤Ë6²óÌܤÇÌá¤ë¥«¡¼¥É¤ÎÅϤ·Êý¤Ï5! ƱÍͤˤ·¤Æn¿Í¤¬n²óÌܤǸµ¤ËÌá¤ë¥«¡¼¥É¤ÎÅϤ·Êý¤Ï(n-1)! 6¿Í¤ÎÃæ¤Ë¤Ï¤³¤Î¤è¤¦¤Ên¿Í¤ÎÁȤ¬Ê£¿ôÁȸºß¤¹¤ë¤Î¤Ç¤½¤ì¤ò(l,m,n,¡¦¡¦¡¦)¤Èµ½Ò¤¹¤ë¡£ º£¸µ¤ËÌá¤é¤Ê¤¤¤è¤¦¤Ê¥«¡¼¥É¤ÎÅϤ·Êý¤Ï(1,5)(2,4)(1,1,4)¤Î¤ß¡Ê¤Ä¤Þ¤ê6¤ÎÌó¿ô¤Ç¤Ï̵¤¤¿ô¤ò´Þ¤àÁȤ߹ç¤ï¤»¡Ë¤Ê¤Î¤Ç¡¢ 6!-(6¡¦4!+6C2¡¦3!+6C2¡¦3!¡Ë=396 ÀâÌÀ¤Ï»»¿ô¤Ã¤Ý¤¯¤·¤Þ¤·¤¿¡Ê¾Ð¡Ë |
¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 0:27:30¡¡¡¡
¡¡¡¡33465 |
Taro |
ÁÇľ¤Ë¤ä¤Ã¤¿¤ê¡¢Ìá¤é¤Ê¤¤ÊýË¡¤Ç¤â¹Í¤¨¤Æ¤ß¤Þ¤·¤¿¡£
¤·¤«¤·4¿Í¤Ç¤Î¤â¤È¤ËÌá¤é¤Ê¤¤½Û´Ä¤ò6Ä̤ê¤È¤·¤Æ¤Þ¤·¤¿ »ÅÊý¤Ê¤¤¤Î¤Ç·ë¶É¥×¥í¥°¥é¥à¤Ç¤¹orz |
¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 0:28:24¡¡¡¡
¡¡¡¡33466 |
±Ñ¤Á¤ã¤ó |
ÃÏÆ»¤Ë¾ò·ï¤ËÅö¤Æ¤Ï¤Þ¤ë¥â¥Î¤ò¾ì¹çʬ¤±¤·¤Æ²ò¤¤Þ¤·¤¿¡£
(1,1,1,1,1,1)¤Ëµ¤ÉÕ¤«¤Ê¤«¤Ã¤¿ ·Ç¼¨ÈĤÎÊ佸¹ç¤Î¹Í¤¨Êý¤ò¸«¤Æ¶Ã¤¤Þ¤·¤¿¡£ ¤½¤Ã¤Á¤ÎÊý¤¬¾å¼ê¤¤¤Ç¤¹¤Í¡£¾ì¹ç¤Î¿ô¤Ï¶ì¼ê¤Ç¤¹¡£ |
µï´Ö¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 0:34:11¡¡¡¡
HomePage:²¿¤«¡¡¡¡33467 |
¤Ú¤×¤·¡÷É¡¥»¥ì¥Ö |
¥°¥ë¡¼¥×ʬ¤±¤Ç¤¹¤Í¡¼
¤·¤«¤·¡¢¤Ê¤«¤Ê¤«Àµ³Î¤Ë·×»»¤Ç¤¤Ê¤«¤Ã¤¿¡¨ 6²ó¤Ç¤â¤È¤ËÌá¤ë¤È¤¤¤¦¤³¤È¤Ï¡¢£±²ó¤«2²ó¤«3²ó¤«6²ó¤Ç½Û´Ä¤¹¤ì¤Ð¤¤¤¤¤«¤é¡¢ £±¥³¤«£²¥³¤«£³¥³¤«£¶¥³¤Ç¥°¥ë¡¼¥×¤òºî¤ì¤Ð¤¤¤¤ ¤¿¤À¡¢¤³¤ÎÊýË¡¤ó¤À¤È¤Ê¤¼¤«Àµ²ò¤Ç¤¤Ê¤«¤Ã¤¿¤«¤é·ë¶É 1,1,4¤È2,4¤È1,5¤ò720¤«¤é°ú¤¤Þ¤·¤¿orz |
¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 0:40:08¡¡¡¡
¡¡¡¡33468 |
SUPER SPECIAL SEMTEX |
´°Á´¤ËÇÔË̤Ǥ¹
·×»»¥ß¥¹¤¬Â³½Ð ·ë¶É£µ¿Í¤Î½Û´Ä¤È£´¿Í¤Î½Û´Ä¤¬¤Õ¤¯¤Þ¤ì¤ë¤Î¤ò°ú¤¤Þ¤·¤¿ |
¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 0:42:54¡¡¡¡
¡¡¡¡33469 |
Áó¤¤àÏ¡¹¤µ¤ó |
£¶²ó¤Ç¤Î½Û´Ä¤¬¡¢£¶¸Ä¤Î³ÉÍð½çÎó¤È»×¤¤¤³¤ó¤Ç¤Æ¡¢¤Ê¤«¤Ê¤«Àµ²ò¤Ë¤¿¤É¤êÃ失¤Þ¤»¤ó¤Ç¤·¤¿¡£¡ÖµÕ»»¡×¤Ç²ò¤¤¤¿¤é¤è¤¤¤Î¤Í¡£·ë¹½²ù¤·¤¤¤Ç¤¹¤Í¤§¡£ |
¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 0:43:11¡¡¡¡
¡¡¡¡33470 |
Mr.¥À¥ó¥Ç¥£ |
£¶¸Ä¤Î³ÉÍð½çÎ󤫤éÉÔŬ¤Ê¤â¤Î¤ò°ú¤³¤¦¤È¤·¤¿¤ê¡¢¾ì¹çʬ¤±¤¬Ï³¤ì¤¿¤ê¤Ç´Ö°ã¤¤¤Þ¤¯¤ê¤Þ¤·¤¿¡£
·ë¶É¤Ï¡¢¤¢¤ß¡¼¤µ¤ó¤ÈƱ¤¸¤¯¡¢£±¡Ü15¡Ü45¡Ü15¡Ü40¡Ü40¡Ü120¡Ü120¡á396(Ä̤ê) ¤È¤¤¤¦¼°¤Ë¤Ê¤ê¤Þ¤·¤¿¡£ ¤³¤ó¤Ê¤Ë¿¤¯¤Ê¤ë¤È¤Ï»×¤ï¤º¡¢¡ÖµÕ»»¡×¤ÎȯÁÛ¤¬½Ð¤Æ¤¤Þ¤»¤ó¤Ç¤·¤¿¡£¡ÊƬ¤¬·ø¤¤¤è¡Á¡¦¡¦¡¦µã¡Ë |
Âçºå¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 1:25:52¡¡¡¡
¡¡¡¡33471 |
Â翹˼µÈ |
£±¡Ý¡Ê£²¡¤£³¡Ë¤Î¾ì¹ç¤ò¿ô¤¨Ëº¤ì¡¦¡¦¡¦
¤Ê¤ë¤Û¤É¡¢°ú¤¯¤Û¤¦¤¬Â®¤½¤¦¤Ç¤¹¤¬»ä¤Î¾ì¹ç¤Ï¤É¤Á¤é¤Ë¤»¤èº¬ËÜŪ¤Ë´Ö°ã¤Ã¤Æ¤¤¤¿¡¦¡¦¡¦ |
¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 2:59:29¡¡¡¡
¡¡¡¡33472 |
¥Ï¥é¥®¥ã¡¼¥Æ¥¤ |
¥×¥í¥°¥é¥à¤Ç¤¹¡£
¹ÔÎó¤Ëľ¤·¤Æ·×»»¤·¤Þ¤·¤¿¡£ Á«°Ü¹ÔÎó¤òÊѤ¨¤Ê¤¬¤é¿ô¤¨¤Þ¤·¤¿¡£¤¿¤Ö¤ó ¸ÇÍÃͤòµá¤á¤ì¤Ð¤¹¤°¤ï¤«¤ë¤Î¤Ç¤Ï¤Ê¤¤¤«¤È»×¤¤¤Þ¤¹¡£ |
»³¸ý¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 7:33:19¡¡¡¡
HomePage:À©¸æ¹©³Ø¤Ë¥Á¥ã¥ì¥ó¥¸¡¡¡¡33473 |
abc |
³ÉÍð¡Ê´°Á´¡Ë½çÎó¤òÍøÍѤ·¤Æ¿ô¤¨¤è¤¦¤È¤·¤Æ¡¢½ÅÊ£¤¹¤ë¾ì¹ç¤ò¹Í¤¨¤º²¿²ó¤â¸í¤Ã¤Æ¤·¤Þ¤¤¤Þ¤·¤¿¡£¤¢¡¼¤¯¤µ¤ó¤Î¤è¤¦¤Ë¡¢½ä²óÃÖ´¹¤òÍøÍѤ·¤¿Í¾»ö¾Ý¤Çµá¤á¤ë¤Î¤¬´Êñ¤Ç¥¨¥ì¥¬¥ó¥È¤Ç¤¹¤Í¡£ |
¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 8:17:18¡¡¡¡
¡¡¡¡33474 |
abcba@jugglermoka |
#33464¤È¤ä¤êÊý¤ÏÁ´¤¯Æ±¤¸¤Ç¤¹¡£
¹Í¤¨Êý¤Ï¤¹¤°¤Ëʬ¤«¤Ã¤¿¤Î¤Ç¤¹¤¬·×»»´Ö°ã¤¨¤ÎϢ³¤Ç¤·¤¿¡£ ¡Ê£´¡¢£±¡¤£±¡Ë¡Ê£´¡¤£²¡Ë¡Ê£µ¡¤£±¡Ë¤Ç£´½Û´Ä¤Î¾ì¹ç¤Ï£¶Ä̤ꡢ £µ½Û´Ä¤Î¾ì¹ç¤Ï£²£´Ä̤ê¤Ê¤Î¤Ç £·£²£°-¡Ê£²£´¡ß£¶+£¶¡ß£³£°¡Ë¡á£³£¹£¶Ä̤ê¤Ç¤¹¡£ |
¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 11:00:22¡¡¡¡
¡¡¡¡33475 |
uchinyan |
¤Ï¤¤¡¤¤³¤ó¤Ë¤Á¤Ï¡£¤µ¤Æ¡¤º£²ó¤ÎÌäÂê¤Ï¡¥¡¥¡¥
Âç³Ø¤Ê¤É¤Ç¹ÔÎ󼰤ΰìÈÌÏÀ¤ò³Ø¤ó¤À¿Í¤Ï¡Ö¤¢¡¤ÃÖ´¹¤À¤Ê¡£¡×¤È»×¤¤»ê¤ê¡¤¼ã´³ÍÍø¤«¤â¤·¤ì¤Þ¤»¤ó¡£ ¤â¤Á¤í¤ó¡¤¾ì¹ç¤Î¿ô¤Î·×»»¤Ë¤Ï¤³¤¦¤·¤¿Ã챤ÏÁ´¤¯ÉÔÍפǤ¹¤¬¡¤¤½¤³¤½¤³ÂçÊѤǤ¹¤Í¡£ ¤¦¤Þ¤¯ÀâÌÀ¤Ç¤¤º¡¤Ä¹¤¯¤Ê¤Ã¤Æ¤·¤Þ¤Ã¤Æ¿½¤·Ìõ¤¢¤ê¤Þ¤»¤ó¤¬¡¥¡¥¡¥ ¥¤¥¹ 1, 2, ... ¤È¥«¡¼¥É a, b, ... ¤ÎÁȹ礻¤ò (1->a,2->b,...) ¤Ê¤É¤È½ñ¤¯¤³¤È¤Ë¤·¡¤ 1 È֤Υ¤¥¹¤Ë A Ϻ¡¤2 È֤Υ¤¥¹¤Ë B Ϻ¡¤¡¥¡¥¡¥¤¬ºÂ¤Ã¤Æ¤¤¤ë¾õÂÖ¤ò¡¤Îã¤Ë¹ç¤ï¤»¤Æ¡¤(A,B,...) ¤Ê¤É¤È½ñ¤¯¤³¤È¤Ë¤·¤Þ¤¹¡£ (ÃÖ´¹¤È¤·¤Æ¤Ï¡¤°ìϺ¤¬ A È֤Υ¤¥¹¤Ë¡¤ÆóϺ¤¬ B È֤Υ¤¥¹¤Ë¡¤¡¥¡¥¡¥ºÂ¤Ã¤Æ¤¤¤ë¾õÂÖ¤ò (A,B,...) ¤Ê¤É¤È¤·¤¿Êý¤¬¼«Á³¤Ç¤·¤ç¤¦¤¬¡£) Îã¤Ï¡¤(1->2,2->3,3->5,4->1,5->4,6->6)¡¤(1,2,3,4,5,6) -> (4,1,2,5,3,6) -> (5,4,1,3,2,6) -> ... ¤Ç¤¹¡£ ¤µ¤Æ¡¤¤³¤¦¤·¤¿µË¡¤Ç¤¤¤í¤¤¤í¤ÈÄ´¤Ù¤Æ¤ß¤ë¤È¡¤6 ²óÀÊÂؤ¨¤ò¤·¤ÆºÇ½é¤Î (1,2,3,4,5,6) ¤ËÌá¤Ã¤Æ¤¤¤ë¤Î¤Ï¡¤ (1->a,2->b,3->c,4->d,5->e,6->f) ¤¬ 6 ¤ÎÌó¿ô 1, 2, 3, 6 ¤Î¤¤¤º¤ì¤«¤Î¸Ä¿ô¤Î¿ô»ú¤ÇÊĤ¸¤Æʬ³ä¤Ç¤¤ë¾ì¹ç¤Èʬ¤«¤ê¤Þ¤¹¡£ Î㤨¤Ð¡¤(1->1,2->2,3->3,4->4,5->5,6->6) ¤Ï¡¤1 ²ó¤Ç¸µ¤ËÌá¤ê¤Þ¤¹¡£¤·¤¿¤¬¤Ã¤Æ¡¤ÅöÁ³¡¤6 ²ó¤Ç¸µ¤ËÌá¤ê¤Þ¤¹¡£ (1->1,2->3,3->2,4->5,5->6,6->4) ¤Ï¡¤(1->1) ¤Ï 1 ²ó¡¤(2->3,3->2) ¤Ï 2 ²ó¡¤(4->5,5->6.6->4) ¤Ï 3 ²ó¤Ç¡¤Á´ÂÎ¤Ï 6 ²ó¤Ç¸µ¤ËÌá¤ê¤Þ¤¹¡£ (1->2,2->3,3->4,4->5,5->6,6->1) ¤Ï¡¤Á´ÂΤ¬ 6 ²ó¤Ç¸µ¤ËÌá¤ê¤Þ¤¹¡£ °ìÊý¡¤(1->2,2->3,3->5,4->1,5->4,6->6) ¤Ï¡¤1, 2, 3, 4, 5 ¤ÎÉôʬ¤Ï 5 ²ó¤Ç¸µ¤ËÌá¤ê¡¤6 ²ó¤Ç¤Ï¸µ¤ËÌá¤ê¤Þ¤»¤ó¡£ (ÃÖ´¹¤Î·×»»¤Î·Ð¸³¤¬¤¢¤ë¤È¡¤¤³¤Îµ¬Â§À¤Ë¤¹¤°µ¤¤¬ÉÕ¤¯¤Ç¤·¤ç¤¦¡£) ¤½¤³¤Ç¡¤¤³¤¦¤·¤¿Ê¬³ä¤Î¥Ñ¥¿¡¼¥ó¤ò¸µ¤ËÌá¤ë²ó¿ô¤òÊÂ¤Ù¤Æ [ ] ¤Ç³ç¤Ã¤Æ½ñ¤¯¤³¤È¤Ë¤·¤Þ¤¹¡£ (1->1,2->2,3->3,4->4,5->5,6->6) ¤Ï¡¤[111111]¡£ (1->1,2->3,3->2,4->5,5->6,6->4) ¤Ï¡¤[123]¡£(1, 2, 3 ¤òÆþ¤ìÂؤ¨¤¿¤â¤Î¤ÏƱ¤¸¥Ñ¥¿¡¼¥ó¤È¤·¤Þ¤¹¡£) (1->2,2->3,3->4,4->5,5->6,6->1) ¤Ï¡¤[6]¡£ (1->2,2->3,3->5,4->1,5->4,6->6) ¤Ï¡¤[15]¡£ ¤¹¤ë¤È¡¤·ë¶É¡¤6 ²óÀÊÂؤ¨¤ò¤·¤Æ¸µ¤ËÌá¤ë¤Î¤Ï¡¤¼¡¤Î¾ì¹ç¤Ç¤¹¡£ ¡¦[111111]¡§(1->1,2->2,3->3,4->4,5->5,6->6) ¤À¤±¤Ê¤Î¤Ç¡¤1 Ä̤ꡣ ¡¦[11112]¡§2 ¤òÁª¤Ö¤Î¤Ë 6C2 = 15 Ä̤ꡤ2 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ç 1 Ä̤ê¤Ç¡¤15 * 1 = 15 Ä̤ꡣ ¡¦[1113]¡§3 ¤òÁª¤Ö¤Î¤Ë 6C3 = 20 Ä̤ꡤ3 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ç 2 Ä̤ê¤Ç¡¤20 * 2 = 40 Ä̤ꡣ ¡¦[1122]¡§2 ¤òÁª¤Ö¤Î¤Ë 6C2 * 4C2 * 1/2! = 45 Ä̤ꡤ2 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ç 1 Ä̤ê¤Ç¡¤45 * 1 * 1 = 45 Ä̤ꡣ ¡¦[123]¡§2 ¤òÁª¤Ö¤Î¤Ë 6C2 = 15 Ä̤ꡤ3 ¤òÁª¤Ö¤Î¤Ë 4C3 = 4 Ä̤ꡤ2 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ç 1 Ä̤ꡤ3 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ç 2 Ä̤ê¤Ç¡¤15 * 4 * 1 * 2 = 120 Ä̤ꡣ ¡¦[222]¡§2 ¤òÁª¤Ö¤Î¤Ë 6C2 * 4C2 * 2C2 * 1/3! = 15 Ä̤ꡤ2 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ç 1 Ä̤ê¤Ç¡¤15 * 1 * 1 * 1 = 15 Ä̤ꡣ ¡¦[33]¡§3 ¤òÁª¤Ö¤Î¤Ë 6C3 * 3C3 * 1/2! = 10 Ä̤ꡤ3 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ç 2 Ä̤ê¤Ç¡¤10 * 2 * 2 = 40 Ä̤ꡣ ¡¦[6]¡§6 ¤òÁª¤Ö¤Î¤Ë 6C6 = 1 Ä̤ꡤ6 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ç 5 * 4 * 3 * 2 * 1 * 1 = 120 Ä̤ê¤Ç¡¤1 * 120 = 120 Ä̤ꡣ ¤³¤³¤Ç¡¤6 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ï¡¤1->a ¤Ï 5 Ä̤ꡤa->b ¤Ï 1,a ¤Ï¥À¥á¤Ê¤Î¤Ç 4 Ä̤ꡤb->c ¤Ï 1,a,b ¤Ï¥À¥á¤Ê¤Î¤Ç 3 Ä̤ꡤ c->d ¤Ï 1,a,b,c ¤Ï¥À¥á¤Ê¤Î¤Ç 2 Ä̤ꡤd->e ¤Ï 1,a,b,c,d ¤Ï¥À¥á¤Ê¤Î¤Ç 1 Ä̤ꡤe->f ¤Ï f = 1 ¤·¤«¤Ê¤¤¤Î¤Ç 1 Ä̤ꡤ¤Ç¤¹¡£ °Ê¾å¤Ç¤¹¤Ù¤Æ¤Ê¤Î¤Ç¡¤1 + 15 + 40 + 45 + 120 + 15 + 40 + 120 = 396 Ä̤ꡤ¤Ë¤Ê¤ê¤Þ¤¹¡£ ¤Ê¤ª¡¤Á´ÂÎ 6! = 720 Ä̤ꡤ¤«¤é¡¤6 ²ó¤ÇºÇ½é¤Î¾õÂÖ¤ËÌá¤é¤Ê¤¤¾ì¹ç¤ò°ú¤¤¤¿Êý¤¬·×»»¤¬³Ú¤Ç¤¹¡£ 6 ²ó¤ÇºÇ½é¤Î¾õÂÖ¤ËÌá¤é¤Ê¤¤¤Î¤Ï¼¡¤Î¾ì¹ç¤Ç¤¹¡£ ¡¦[114], [24]¡§4 ¤òÁª¤Ö¤Î¤Ë 6C4 = 15 Ä̤ꡤ4 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ç 3 * 2 * 1 * 1 = 6 Ä̤ꡤ[11] ¤È [2] ¤È¤ò¹ç¤ï¤»¤Æ 2 Ä̤ê¤Ç¡¤15 * 6 * 2 = 180 Ä̤ꡣ ¡¦[15]¡§5 ¤òÁª¤Ö¤Î¤Ë 6C5 = 6 Ä̤ꡤ5 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ç 4 * 3 * 2 * 1 * 1 = 24 Ä̤ê¤Ç¡¤6 * 24 = 144 Ä̤ꡣ ¤½¤³¤Ç¡¤720 - (180 + 144) = 396 Ä̤ꡤ¤Ë¤Ê¤ê¤Þ¤¹¡£ ¼Â¤Ï¡¤Ä«¤Ï»æ¤È±ôÉ®¤¬¼ê¸µ¤Ë̵¤¯°Å»»¤ò¿´¤¬¤±¤ë¤·¤«¤Ê¤¯¡¤ºÇ½é¤ÎÊýË¡¤ÇºÃÀÞ¤·¤«¤±¤Þ¤·¤¿¤¬¡¤Á´ÂΤ«¤é°ú¤¯ÊýË¡¤Ç²¿¤È¤«¤Ç¤¤Þ¤·¤¿ (^^; |
¥Í¥³¤Î½»¤à²È¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 14:30:57¡¡¡¡
MAIL:uchi@sco.bekkoame.ne.jp ¡¡¡¡33476 |
??? |
Option Explicit
Dim a(6) As Integer Sub Macro1() Sheets("Sheet1").Select Cells(1, 1).Value = 0 Range("A1").Select Call saiki(1) End Sub Sub saiki(ByVal n As Integer) Dim j As Integer a(n) = 1 While a(n) <= 6 If onaji(n) = 0 Then If n < 6 - 1 Then Call saiki(n + 1) Else a(6) = 6 For j = 1 To 6 - 1 a(6) = a(6) + j - a(j) Next j Call check(1) End If End If a(n) = a(n) + 1 Wend End Sub Sub check(ByVal x As Integer) Dim b(6) As Integer Dim dame As Integer Dim j As Integer For j = 1 To 6 b(j) = a(a(a(a(a(a(a(j))))))) Next j dame = 0 j = 1 While dame = 0 And j <= 6 If b(j) <> a(j) Then dame = 1 Else j = j + 1 End If Wend If dame = 0 Then Cells(1, 1).Value = Cells(1, 1).Value + 1 For j = 1 To 6 Cells(Cells(1, 1).Value, j + 1).Value = a(j) Next j End If End Sub Private Function onaji(ByVal n As Integer) As Integer Dim j As Integer onaji = 0 j = 1 While onaji = 0 And j < n If a(j) = a(n) Then onaji = 1 Else j = j + 1 End If Wend End Function |
¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 12:49:11¡¡¡¡
¡¡¡¡33477 |
uchinyan |
·Ç¼¨ÈĤòÆɤߤޤ·¤¿¡£
#33462¤ÎÁ°È¾¡¤#33467¡¤#33471¡¤#33472¡©¡¤#33476¤ÎÁ°È¾ 6 ²óÀÊÂؤ¨¤ò¤·¤ÆºÇ½é¤Î¾õÂÖ¤ËÌá¤ë¾ì¹ç¤òÁÇľ¤Ë¿ô¤¨¤ë²òË¡¡£ #33462¤Î¸åȾ¡¤#33464¡¤#33465¡¤#33468¡¤#33469¡¤#33475¡¤#33476¤Î¸åȾ 6 ²óÀÊÂؤ¨¤ò¤·¤ÆºÇ½é¤Î¾õÂÖ¤ËÌá¤é¤Ê¤¤¾ì¹ç¤òÁ´ÂΤ«¤é°ú¤¯²òË¡¡£ #33466¡¤#33473¡¤#33477 ¥×¥í¥°¥é¥à¡£ ¤Ê¤ª¡¤ #33465 ¡ä½ê°âÂå¿ô¤Ç¤Î½ä²ó·²¤ÎÌäÂê¤Ç¤¹¤Í¡£ ¤Õ¤à¡¤·²ÏÀŪ¤Ëª¤¨¤Þ¤¹¤«¡¥¡¥¡¥·²ÏÀ¤Ï¤Þ¤È¤â¤ËÊÙ¶¯¤·¤¿¤³¤È¤¬Ìµ¤¤¤Î¤Ç (^^; ¤½¤ÎÃ챤ò»È¤¨¤Ð¡¤´Êñ¤Ë²ò¤±¤Á¤ã¤¦¤Î¤«¤Ê¡© #33470 ¡ä£¶²ó¤Ç¤Î½Û´Ä¤¬¡¢£¶¸Ä¤Î³ÉÍð½çÎó¤È»×¤¤¤³¤ó¤Ç¤Æ¡¢ #33471 ¡ä£¶¸Ä¤Î³ÉÍð½çÎ󤫤éÉÔŬ¤Ê¤â¤Î¤ò°ú¤³¤¦¤È¤·¤¿¤ê¡¢ #33474 ¡ä³ÉÍð¡Ê´°Á´¡Ë½çÎó¤òÍøÍѤ·¤Æ¿ô¤¨¤è¤¦¤È¤·¤Æ¡¢ ³Î¤«¤Ë³ÉÍð½çÎó¤ò»È¤ª¤¦¤È»×¤¦¤È;ʬ¤Ê½ÅÊ£¤ò¹Íθ¤¹¤ëɬÍפ¬¤¢¤ê¤Þ¤¹¡£ ¼è¤ê´º¤¨¤º¡¤»ä¤Î#33476¤ÎÁ°È¾¤ËŬÍѤ·¤Æ¤ß¤ë¤È¡¥¡¥¡¥ ¤Þ¤º¡¤³ÉÍð¿ôÎó½çÎó a(n) ¤Ï¡¤¾ÚÌÀ¤Ïά¤·¤Þ¤¹¤¬¡¤ a(n) = (n-1) * (a(n-1) + a(n-2)) a(1) = 0 a(2) = 1 a(3) = 2 a(4) = 9 a(5) = 44 a(6) = 265 ¡¥¡¥¡¥ [111111] ¤Ë¤Ï»È¤¨¤Þ¤»¤ó¡£¤³¤Î¾ì¹ç¤Ï 1 Ä̤ꡣ [11112]¡¤[1113]¡¤[1122]¡¤[123] ¤Ç¤Ï¡¤2 ¤ÎÃæ¤ÎʤÙÂؤ¨¡¤3 ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ç»È¤¨¤Æ a(2) Ä̤ê¤È a(3) Ä̤ꡣ [222]¡¤[33]¡¤[6] ¤Ï¡¤a(6) ¤«¤é [24] ¤ò°ú¤±¤Ð¤¤¤¤¤Ç¤¹¤¬¡¤[24] ¤Î [4] ¤ÎÃæ¤ÎʤÙÂؤ¨¤Ï [22] ¤Îʬ¤ò°ú¤«¤Ê¤¤¤È¤¤¤±¤Ê¤¤¤Î¤Ç¡¤ a(4) ¤Ç¤Ï¤Ê¤¯ a(4) - 4C2 * 2C2 * 1/2! * a(2) * a(2) ¤Ê¤Î¤ËÍ×Ãí°Õ¤Ç¤¹¡£ ¤½¤³¤Ç¡¤·ë¶É¡¤ 1 + 6C2 * a(2) + 6C3 * a(3) + 6C2 * 4C2 * 1/2! * a(2) * a(2) + 6C2 * 4C3 * a(2) * a(3) + (a(6) - 6C2 * a(2) * (a(4) - 4C2 * 2C2 * 1/2! * a(2) * a(2))) = 1 + 15 * 1 + 20 * 2 + 15 * 6 * 1/2 * 1 * 1 + 15 * 4 * 1 * 2 + (265 - 15 * 1 * (9 - 6 * 1 * 1/2 * 1 * 1)) = 1 + 15 + 40 + 45 + 120 + (265 - 90) = 1 + 15 + 40 + 45 + 120 + 175 = 396 Ä̤ê Á´ÂΤ«¤é°ú¤¯¾ì¹ç¤âƱÍͤˤǤ¤Þ¤¹¤¬¡¤É¬¤º¤·¤â³Ú¤Ç¤Ï¤Ê¤¤¤è¤¦¤Ç¤¹¡£ 6! - 6C4 * (a(4) - 4C2 * 2C2 * 1/2! * a(2) * a(2)) * 2 - 6C5 * (a(5) - 5C2 * 3C3 * a(2) * a(3)) = 720 - 15 * (9 - 6 * 1 * 1/2 * 1 * 1) * 2 - 6 * (44 - 10 * 1 * 1 * 2) = 720 - 180 - 144 = 396 ÄÌ¤ê ¤È¤Ê¤ê¤Þ¤¹¡£ |
¥Í¥³¤Î½»¤à²È¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 14:20:28¡¡¡¡
MAIL:uchi@sco.bekkoame.ne.jp ¡¡¡¡33478 |
¥Ï¥é¥®¥ã¡¼¥Æ¥¤ |
#33473
Ʊ¤¸¤³¤È¤Ç¤·¤ç¤¦¤¬¡¢¸ÇÍ¿¹à¼°¤¬¦Ë¡°£¶¡Ý£±¤È¤Ê¤ë¤â¤Î¤Î¿ô¤Ç¤¹¤Í¡£ ¹©³Ø¤ÇÍ̾¤Ê¤Î¤Ï£Í·ÏÎó¤Ç¤¹¡£¡ÊÆæ¡Ë |
»³¸ý¡¡¡¡
12·î18Æü¡ÊÌÚ¡Ë 19:30:49¡¡¡¡
HomePage:À©¸æ¹©³Ø¤Ë¥Á¥ã¥ì¥ó¥¸¡¡¡¡33479 |
¥Ï¥é¥®¥ã¡¼¥Æ¥¤ |
MATLAB¤Ë¤è¤ë¥×¥í¥°¥é¥à
a¤¬Á«°Ü¹ÔÎó¡¢x,xd¤¬°ÌÃÖ¤òɽ¤¹¾õÂÖÊÑ¿ô m¤¬Åú¤Î²ó¿ô ¤´»²¹Í¤Þ¤Ç¤Ë xd=[1 2 3 4 5 6]'; x=[1 2 3 4 5 6]'; m=0; p=perms(1:6); for k=1:720; a=zeros(6); b=p(k,:); a(1,b(1))=1; a(2,b(2))=1; a(3,b(3))=1; a(4,b(4))=1; a(5,b(5))=1; a(6,b(6))=1; xd=x; % for ii=1:6; xd=a'*xd; end; if xd==x, m=m+1;end; end; m |
»³¸ý¡¡¡¡
12·î19Æü¡Ê¶â¡Ë 7:39:38¡¡¡¡
HomePage:À©¸æ¹©³Ø¤Ë¥Á¥ã¥ì¥ó¥¸¡¡¡¡33480 |
¡Ö¿ô³Ø¡×¾®Î¹¹Ô |
¥×¥í¥°¥é¥à¤Ç¤·¤Æ¤ß¤Þ¤·¤¿¡£ |
¡¡¡¡
12·î21Æü¡ÊÆü¡Ë 0:38:09¡¡¡¡
¡¡¡¡33481 |
¡Ö¿ô³Ø¡×¾®Î¹¹Ô |
Risa/Asir¡¡¤Ç¼¡¤Î¤è¤¦¤Ë¤·¤Þ¤·¤¿¡£
0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 ¡¡¡¡¤Î¤è¤¦¤Ê£¶¡ß£¶¹ÔÎó¤Î¤¦¤Á¡¢£¶¾è¤·¤Æñ°Ì¹ÔÎó¤Ë¤Ê¤ë¤â¤Î 0 0 0 0 0 1¡¡¡¡¡¡¤ò¿ô¤¨¾å¤²¤Þ¤¹¡£ 0 0 0 0 1 0 M=0; A=newmat(6,6); E=newmat(6,6); for(I=0;I<=5;I++){E[I][I]=1;} for(I0=0;I0<=5;I0++){ for(I1=0;I1<=5;I1++){ for(I2=0;I2<=5;I2++){ for(I3=0;I3<=5;I3++){ for(I4=0;I4<=5;I4++){ for(I5=0;I5<=5;I5++){ A=newmat(6,6); A[0][I0]=1;A[1][I1]=1;A[2][I2]=1; A[3][I3]=1;A[4][I4]=1;A[5][I5]=1; if(A^6==E){M++;} }}}}}} return M; ¤¢¤¤é¤«¤ËÉÔŬÅö¤Ê¤â¤Î¤Ë¤Ä¤¤¤Æ¤â£¶¾è¤·¤ÆÄ´¤Ù¤ë¤è¤¦¤Ë¤Ê¤Ã¤Æ¤·¤Þ¤¤ ¤Þ¤·¤¿¤¬¡¢¥×¥í¥°¥é¥à¤¬´Êñ¤Ê¤Î¤Ç¡¢¡Ê¡°¡°¡¨ |
¡¡¡¡
12·î21Æü¡ÊÆü¡Ë 0:45:24¡¡¡¡
¡¡¡¡33482 |
¥Ï¥é¥®¥ã¡¼¥Æ¥¤ |
#33482
²Ê³Ø·×»»¤â³Ú¤Ë¤Ê¤ê¤Þ¤·¤¿¡£¤à¤«¤·FORTRAN¤Ç¹ÔÎó·×»»¤ò¤¹¤ë¤Î¤Ë DOʸ¤Î¥Í¥¹¥È¤Î²ô¤Ë¤Ê¤Ã¤Æ¸«Æñ¤¤¥×¥í¥°¥é¥à¤Ë¤Ê¤Ã¤¿¤Î¤ò»×¤¤½Ð¤·¤Þ¤¹¡£ HP¤¬BASIC¤Ç¹ÔÎ󤬰·¤¨¤ë¤è¤¦¤Ë¤·¤Æ¡¢¥Ù¥¯¥È¥ë·¿¤Î·×»»¤¬ÉáµÚ¤¹¤ë¤Î¤Ë ¤Ä¤ì¡¢²Ê³Øµ»½Ñ·×»»¤Î¼çή¤Ï¥Ù¥¯¥È¥ë¡¢¹ÔÎó¤Ë¤Ê¤ê¤Þ¤·¤¿¡£¤³¤ì¤â²û¤«¤·¤¤ ¤Ç¤¹¡£ Åý·×·×»»¤Ê¤ó¤«¤Ïŵ·¿Åª¤Ê¹ÔÎó·×»»¤À¤È»×¤¤¤Þ¤¹¡£¤Ç¤â³Ú¤Ë ¤Ê¤Ã¤¿¤À¤±¥¢¥¤¥Ç¥¢¤È¤«¤ËƬ¤ò»È¤¦¤³¤È¤¬½ÅÍפȤʤê¤Þ¤·¤¿¡£ ¤â¤Ã¤ÈÀΤϼê²ó¤·¤Ç·×»»¤È¤«¥ê¥ì¡¼¤¬¥¬¥Á¥ã¥¬¥Á¥ã¤¤¤Ã¤ÆÆ°¤¯ ¤â¤Î¤È¤«º£¤Î¿Í¤¬Ê¹¤¤¤¿¤é¾Ð¤¤ÏäǤ¹¡£¤³¤ì¤â²û¤«¤·¤¤¡£ ¤¢¤ë²½³Ø²ñ¼Ò¤Ë¤Ï·×»»µ¡¼¼¤¬¤¢¤Ã¤Æ¤½¤³¤Ë¤Ï¼ê²ó¤·¤ò¤¹¤ë½÷»Ò ÉôÂ⤬¤¤¤¿¤½¤¦¤Ç¤¹¡£·×»»¤ò°ÍÍꤹ¤ë¤Èµ¡³£¼°¤Î¼ê²ó¤·¥¿¥¤¥¬¡¼ ·×»»µ¡¤Ê¤ó¤«¤Ç·×»»¤·¤Æ·ë²Ì¤¬Ìá¤Ã¤Æ¤¤¤¿¤½¤¦¤Ç¤¹¡£¥¦¥½¤Î¤è¤¦¤Ê ¤ªÏäǤ¹¡£²¿½½¿Í¤Î½÷¤Î»Ò¤¬°ìÀ¸·üÌ¿²ó¤¹³¨¤È¤«ÁÛÁü¤·¤¿¤À¤±¤Ç¤â ¤ª¤«¤·¤¤¤Ç¤¹¡£ |
»³¸ý¡¡¡¡
12·î21Æü¡ÊÆü¡Ë 13:33:45¡¡¡¡
HomePage:À©¸æ¹©³Ø¤Ë¥Á¥ã¥ì¥ó¥¸¡¡¡¡33483 |
¥¹¥â¡¼¥¯¥Þ¥ó |
¤ä¤Ã¤È¤ï¤«¤Ã¤¿...^^;
´°Á´½çÎó¤Î6¸Ä¤Î»þ¡Ê265¡Ë¤«¤é¡¢4¸Ä¤Î»þ (9*6C2=135)¤ò¤Ò¤¤¤¿¤â¤Î¤Ï¤¹¤Ù¤Æ6²ó¥ë¡¼¥×¤Ç¸µ¤ËÌá¤ì¤ë¡£ ¤¢¤È¤Ï¡¢Æ°¤«¤Ê¤¤¤È¤¤ò²Ã¤¨¤ë¡£ 6¸Ä¤È¤âÆ°¤«¤Ê¤¤¡§1 2¸ÄÆ°¤¯¤È¤¤À¤±(4¸ÄÆ°¤«¤Ê¤¤¡Ë¡§6C4=15 3¸ÄÆ°¤¯¤È¤¤À¤±¡Ê3¸ÄÆ°¤«¤Ê¤¤¡Ë¡§2*6C3=40 4¸ÄÆ°¤¯¤È¤¤À¤±¡Ê2¸ÄÆ°¤«¤Ê¤¤¡Ë¡§6C2*4C2=90 5¸ÄÆ°¤¯¤È¤¤À¤±¡Ê1¸ÄÆ°¤«¤Ê¤¤¡Ë¡§2*6C3*3C2=120 ¹ç·×=130+120+90+40+15+1=396Ä̤ê¢ö |
¶â¸÷¡÷²¬»³¡¡¡¡
12·î21Æü¡ÊÆü¡Ë 17:38:57¡¡¡¡
¡¡¡¡33484 |